Cargando…
Discriminative and informative features for biomolecular text mining with ensemble feature selection
Motivation: In the field of biomolecular text mining, black box behavior of machine learning systems currently limits understanding of the true nature of the predictions. However, feature selection (FS) is capable of identifying the most relevant features in any supervised learning setting, providin...
Autores principales: | Van Landeghem, Sofie, Abeel, Thomas, Saeys, Yvan, Van de Peer, Yves |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935429/ https://www.ncbi.nlm.nih.gov/pubmed/20823321 http://dx.doi.org/10.1093/bioinformatics/btq381 |
Ejemplares similares
-
Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data
por: Bonnet, Eric, et al.
Publicado: (2010) -
Discovering drug–drug interactions: a text-mining and reasoning approach based on properties of drug metabolism
por: Tari, Luis, et al.
Publicado: (2010) -
Integrating genome assemblies with MAIA
por: Nijkamp, Jurgen, et al.
Publicado: (2010) -
A novel approach for determining environment-specific protein costs: the case of Arabidopsis thaliana
por: Sajitz-Hermstein, Max, et al.
Publicado: (2010) -
Dynamic deterministic effects propagation networks: learning signalling pathways from longitudinal protein array data
por: Bender, Christian, et al.
Publicado: (2010)