Cargando…
Assessment of dietary intake: NuGO symposium report
Advances in genomics science and associated bioinformatics and technology mean that excellent tools are available for characterising human genotypes. At the same time, approaches for characterising individual phenotypes are developing rapidly. In contrast, there has been much less investment in nove...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935535/ https://www.ncbi.nlm.nih.gov/pubmed/21052527 http://dx.doi.org/10.1007/s12263-010-0175-9 |
Sumario: | Advances in genomics science and associated bioinformatics and technology mean that excellent tools are available for characterising human genotypes. At the same time, approaches for characterising individual phenotypes are developing rapidly. In contrast, there has been much less investment in novel methodology for measuring dietary exposures so that there is now a significant gap in the toolkit for those investigating how diet interacts with genotype to determine phenotype. This symposium reviewed the strengths and limitations of current tools used in assessment of dietary intake and the potential to improve these tools through, for example, the use of statistical techniques that combine information from different sources (such as modelling and calibration methods) to ameliorate measurement error and to provide validity checks. Speakers examined the use of approaches based on technologies such as mobile ‘phones, digital cameras and Web-based systems which offer the potential for more acceptable (for study participants) and less laborious (for researchers and participants) routes to more robust data collection. In addition, the application of omics, especially metabolomics, tools to biofluids to identify new biomarkers of intake offers great potential to provide objective measures of food consumption with the advantage that data may be collected in forms that can be integrated readily with other high throughput (nutrigenomic) technologies. |
---|