Cargando…

Changes in growth and cell wall extensibility of maize silks following pollination

In response to pollination maize silks undergo an accelerated process of senescence which involves an inhibition of elongation. To gain insight into the mechanism underlying this growth response, the relationships among silk elongation kinetics, cell wall biophysical properties, pollen tube growth,...

Descripción completa

Detalles Bibliográficos
Autores principales: Sella Kapu, Nuwan U., Cosgrove, Daniel J.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2935878/
https://www.ncbi.nlm.nih.gov/pubmed/20656797
http://dx.doi.org/10.1093/jxb/erq225
Descripción
Sumario:In response to pollination maize silks undergo an accelerated process of senescence which involves an inhibition of elongation. To gain insight into the mechanism underlying this growth response, the relationships among silk elongation kinetics, cell wall biophysical properties, pollen tube growth, and expansin protein abundance were investigated. The inhibition of silk elongation became apparent beyond 12 h after pollination. Pollinated walls were less responsive in assays of extension induced by pollen β-expansin. Expansin protein abundance and endogenous expansin activity were not considerably reduced after pollination. Silk wall plastic compliance was significantly reduced 6 h post-pollination and beyond, suggesting that the wall undergoes structural modifications leading to its rigidification in response to pollination. The reduction in the plastic compliance occurred locally and progressively, shortly after pollen tubes traversed through a region of silk. Though numerous pollen grains germinated and initiated pollen tubes at the silk tip, the density of pollen tubes gradually declined along the length of the silk and only 1–2 reached the ovary even 24 h after pollination. These results support the notion that pollination-induced cell wall rigidification plays multiple roles in maize reproduction, including inhibition of silk growth and prevention of polyspermy.