Cargando…

TOPSAN: a collaborative annotation environment for structural genomics

BACKGROUND: Many protein structures determined in high-throughput structural genomics centers, despite their significant novelty and importance, are available only as PDB depositions and are not accompanied by a peer-reviewed manuscript. Because of this they are not accessible by the standard tools...

Descripción completa

Detalles Bibliográficos
Autores principales: Weekes, Dana, Krishna, S Sri, Bakolitsa, Constantina, Wilson, Ian A, Godzik, Adam, Wooley, John
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936398/
https://www.ncbi.nlm.nih.gov/pubmed/20716366
http://dx.doi.org/10.1186/1471-2105-11-426
Descripción
Sumario:BACKGROUND: Many protein structures determined in high-throughput structural genomics centers, despite their significant novelty and importance, are available only as PDB depositions and are not accompanied by a peer-reviewed manuscript. Because of this they are not accessible by the standard tools of literature searches, remaining underutilized by the broad biological community. RESULTS: To address this issue we have developed TOPSAN, The Open Protein Structure Annotation Network, a web-based platform that combines the openness of the wiki model with the quality control of scientific communication. TOPSAN enables research collaborations and scientific dialogue among globally distributed participants, the results of which are reviewed by experts and eventually validated by peer review. The immediate goal of TOPSAN is to harness the combined experience, knowledge, and data from such collaborations in order to enhance the impact of the astonishing number and diversity of structures being determined by structural genomics centers and high-throughput structural biology. CONCLUSIONS: TOPSAN combines features of automated annotation databases and formal, peer-reviewed scientific research literature, providing an ideal vehicle to bridge a gap between rapidly accumulating data from high-throughput technologies and a much slower pace for its analysis and integration with other, relevant research.