Cargando…
High Resolution Models of Transcription Factor-DNA Affinities Improve In Vitro and In Vivo Binding Predictions
Accurately modeling the DNA sequence preferences of transcription factors (TFs), and using these models to predict in vivo genomic binding sites for TFs, are key pieces in deciphering the regulatory code. These efforts have been frustrated by the limited availability and accuracy of TF binding site...
Autores principales: | Agius, Phaedra, Arvey, Aaron, Chang, William, Noble, William Stafford, Leslie, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936517/ https://www.ncbi.nlm.nih.gov/pubmed/20838582 http://dx.doi.org/10.1371/journal.pcbi.1000916 |
Ejemplares similares
-
Sequence and chromatin determinants of cell-type–specific transcription factor binding
por: Arvey, Aaron, et al.
Publicado: (2012) -
Inferring transcriptional and microRNA-mediated regulatory programs in glioblastoma
por: Setty, Manu, et al.
Publicado: (2012) -
DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding
por: Ma, Wenxiu, et al.
Publicado: (2017) -
Systematic Evaluation of DNA Sequence Variations on in vivo Transcription Factor Binding Affinity
por: Jin, Yutong, et al.
Publicado: (2021) -
Transcription Factor Binding Affinities and DNA Shape Readout
por: Schnepf, Max, et al.
Publicado: (2020)