Cargando…
Identifying Abnormal Connectivity in Patients Using Dynamic Causal Modeling of fMRI Responses
Functional imaging studies of brain damaged patients offer a unique opportunity to understand how sensorimotor and cognitive tasks can be carried out when parts of the neural system that support normal performance are no longer available. In addition to knowing which regions a patient activates, we...
Autores principales: | Seghier, Mohamed L., Zeidman, Peter, Neufeld, Nicholas H., Leff, Alex P., Price, Cathy J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2936900/ https://www.ncbi.nlm.nih.gov/pubmed/20838471 http://dx.doi.org/10.3389/fnsys.2010.00142 |
Ejemplares similares
-
Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study
por: Parker Jones, ‘Ōiwi, et al.
Publicado: (2014) -
A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI
por: Zeidman, Peter, et al.
Publicado: (2019) -
Variational Bayesian causal connectivity analysis for fMRI
por: Luessi, Martin, et al.
Publicado: (2014) -
Assessing parameter identifiability for dynamic causal modeling of fMRI data
por: Arand, Carolin, et al.
Publicado: (2015) -
Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor
por: Park, Hae-Jeong, et al.
Publicado: (2017)