Cargando…

Crystal Structure of Staphylococcus aureus Metallopeptidase (Sapep) Reveals Large Domain Motions between the Manganese-bound and Apo-states

Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn(2+)-dependent dipeptidase. The crystal...

Descripción completa

Detalles Bibliográficos
Autores principales: Girish, Tavarekere S., Gopal, Balasubramanian
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937973/
https://www.ncbi.nlm.nih.gov/pubmed/20610394
http://dx.doi.org/10.1074/jbc.M110.147579
Descripción
Sumario:Proteases belonging to the M20 family are characterized by diverse substrate specificity and participate in several metabolic pathways. The Staphylococcus aureus metallopeptidase, Sapep, is a member of the aminoacylase-I/M20 protein family. This protein is a Mn(2+)-dependent dipeptidase. The crystal structure of this protein in the Mn(2+)-bound form and in the open, metal-free state suggests that large interdomain movements could potentially regulate the activity of this enzyme. We note that the extended inactive conformation is stabilized by a disulfide bond in the vicinity of the active site. Although these cysteines, Cys(155) and Cys(178), are not active site residues, the reduced form of this enzyme is substantially more active as a dipeptidase. These findings acquire further relevance given a recent observation that this enzyme is only active in methicillin-resistant S. aureus. The structural and biochemical features of this enzyme provide a template for the design of novel methicillin-resistant S. aureus-specific therapeutics.