Cargando…
Spatial patterns of diabetes related health problems for vulnerable populations in Los Angeles
BACKGROUND: Rates for Diabetes Mellitus continue to rise in most urban areas of the United States, with a disproportionate burden suffered by minorities and low income populations. This paper presents an approach that utilizes address level data to understand the geography of this disease by analyzi...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939634/ https://www.ncbi.nlm.nih.gov/pubmed/20796322 http://dx.doi.org/10.1186/1476-072X-9-43 |
Sumario: | BACKGROUND: Rates for Diabetes Mellitus continue to rise in most urban areas of the United States, with a disproportionate burden suffered by minorities and low income populations. This paper presents an approach that utilizes address level data to understand the geography of this disease by analyzing patients seeking diabetes care through an emergency department in a Los Angeles County hospital. The most vulnerable frequently use an emergency room as a common care access point, and such care is especially costly. A fine scale GIS analysis reveals hotspots of diabetes related health problems and provides output useful in a clinic setting. Indeed these results were used to support the work of a progressive diabetes clinic to guide management and intervention strategies. RESULTS: Hotspots of diabetes related health problems, including neurological and kidney issues were mapped for vulnerable populations in a central section of Los Angeles County. The resulting spatial grid of rates and significance were overlaid with new patient residential addresses attending an area clinic. In this way neighbourhood diabetes health characteristics are added to each patient's individual health record. Of the 29 patients, 4 were within statistically significant hotspots for at least one of the conditions being investigated. CONCLUSIONS: Although exploratory in nature, this approach demonstrates a novel method to conduct GIS based investigations of urban diabetes while providing support to a progressive diabetes clinic looking for novel means of managing and intervention. In so doing, this analysis adds to a relatively small literature on fine scale GIS facilitated diabetes research. Similar data should be available for most hospitals, and with due consideration for preserving spatial confidentiality, analysis outputs such as those presented here should become more commonly employed in other investigations of chronic diseases. |
---|