Cargando…

Experimental avian paramyxovirus serotype-3 infection in chickens and turkeys

Avian paramyxoviruses (APMV) are divided into nine serotypes. Newcastle disease virus (APMV-1) is the most extensively characterized, while relatively little information is available for the other APMV serotypes. In the present study, we examined the pathogenicity of two divergent strains of APMV-3,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Sachin, Militino Dias, Flavia, Nayak, Baibaswata, Collins, Peter L., Samal, Siba K.
Formato: Texto
Lenguaje:English
Publicado: EDP Sciences 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2939697/
https://www.ncbi.nlm.nih.gov/pubmed/20663473
http://dx.doi.org/10.1051/vetres/2010042
Descripción
Sumario:Avian paramyxoviruses (APMV) are divided into nine serotypes. Newcastle disease virus (APMV-1) is the most extensively characterized, while relatively little information is available for the other APMV serotypes. In the present study, we examined the pathogenicity of two divergent strains of APMV-3, Netherlands and Wisconsin, in (i) 9-day-old embryonated chicken eggs, (ii) 1-day-old specific pathogen free (SPF) chicks and turkeys, and (iii) 2-week-old SPF chickens and turkeys. The mean death time in 9-day-old embryonated chicken eggs was 112 h for APMV-3 strain Netherlands and > 168 h for strain Wisconsin. The intracerebral pathogenicity index in 1-day-old chicks for strain Netherlands was 0.39 and for strain Wisconsin was zero. Thus, both strains are lentogenic. Both the strains replicated well in brain tissue when inoculated intracerebrally in 1-day-old SPF chicks, but without causing death. Mild respiratory disease signs were observed in 1-day-old chickens and turkeys when inoculated through oculonasal route with either strain. There were no overt signs of illness in 2-weeks-old chickens and turkeys by either strain, although all the birds seroconverted after infection. The viruses were isolated predominantly from brain, lungs, spleens, trachea, pancreas and kidney. Immunohistochemistry studies also showed the presence of large amount of viral antigens in both epithelial and sub-epithelial lining of respiratory and alimentary tracts. Our result suggests systemic spread of APMV-3 even though the viral fusion glycoprotein does not contain the canonical furin proteases cleavage site. Furthermore, there was little or no disease despite systemic viral spread and abundant viral replication in all the tissues tested.