Cargando…
Functional identification of biological neural networks using reservoir adaptation for point processes
The complexity of biological neural networks does not allow to directly relate their biophysical properties to the dynamics of their electrical activity. We present a reservoir computing approach for functionally identifying a biological neural network, i.e. for building an artificial system that is...
Autores principales: | Gürel, Tayfun, Rotter, Stefan, Egert, Ulrich |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer US
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940037/ https://www.ncbi.nlm.nih.gov/pubmed/19639401 http://dx.doi.org/10.1007/s10827-009-0176-0 |
Ejemplares similares
-
Modeling persistent temporal patterns in dissociated cortical cultures using reservoir computing
por: Gürel, Tayfun, et al.
Publicado: (2010) -
Predicting spike activity in neuronal cultures
por: Gürel, Tayfun, et al.
Publicado: (2007) -
Extending Stability Through Hierarchical Clusters in Echo State Networks
por: Jarvis, Sarah, et al.
Publicado: (2010) -
Axonal anisotropy and connectivity inhomogeneities in 2D networks
por: Jarvs, Sarah, et al.
Publicado: (2012) -
Unsupervised Adaptation of Brain-Machine Interface Decoders
por: Gürel, Tayfun, et al.
Publicado: (2012)