Cargando…
Dynamics of the Multiplicity of Cellular Infection in a Plant Virus
Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral geno...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940754/ https://www.ncbi.nlm.nih.gov/pubmed/20862320 http://dx.doi.org/10.1371/journal.ppat.1001113 |
_version_ | 1782186834496847872 |
---|---|
author | Gutiérrez, Serafín Yvon, Michel Thébaud, Gaël Monsion, Baptiste Michalakis, Yannis Blanc, Stéphane |
author_facet | Gutiérrez, Serafín Yvon, Michel Thébaud, Gaël Monsion, Baptiste Michalakis, Yannis Blanc, Stéphane |
author_sort | Gutiérrez, Serafín |
collection | PubMed |
description | Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host. |
format | Text |
id | pubmed-2940754 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-29407542010-09-22 Dynamics of the Multiplicity of Cellular Infection in a Plant Virus Gutiérrez, Serafín Yvon, Michel Thébaud, Gaël Monsion, Baptiste Michalakis, Yannis Blanc, Stéphane PLoS Pathog Research Article Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host. Public Library of Science 2010-09-16 /pmc/articles/PMC2940754/ /pubmed/20862320 http://dx.doi.org/10.1371/journal.ppat.1001113 Text en Gutiérrez et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gutiérrez, Serafín Yvon, Michel Thébaud, Gaël Monsion, Baptiste Michalakis, Yannis Blanc, Stéphane Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title | Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title_full | Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title_fullStr | Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title_full_unstemmed | Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title_short | Dynamics of the Multiplicity of Cellular Infection in a Plant Virus |
title_sort | dynamics of the multiplicity of cellular infection in a plant virus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2940754/ https://www.ncbi.nlm.nih.gov/pubmed/20862320 http://dx.doi.org/10.1371/journal.ppat.1001113 |
work_keys_str_mv | AT gutierrezserafin dynamicsofthemultiplicityofcellularinfectioninaplantvirus AT yvonmichel dynamicsofthemultiplicityofcellularinfectioninaplantvirus AT thebaudgael dynamicsofthemultiplicityofcellularinfectioninaplantvirus AT monsionbaptiste dynamicsofthemultiplicityofcellularinfectioninaplantvirus AT michalakisyannis dynamicsofthemultiplicityofcellularinfectioninaplantvirus AT blancstephane dynamicsofthemultiplicityofcellularinfectioninaplantvirus |