Cargando…
A Parametric Empirical Bayesian framework for fMRI‐constrained MEG/EEG source reconstruction
We describe an asymmetric approach to fMRI and MEG/EEG fusion in which fMRI data are treated as empirical priors on electromagnetic sources, such that their influence depends on the MEG/EEG data, by virtue of maximizing the model evidence. This is important if the causes of the MEG/EEG signals diffe...
Autores principales: | Henson, Richard N., Flandin, Guillaume, Friston, Karl J., Mattout, Jérémie |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941720/ https://www.ncbi.nlm.nih.gov/pubmed/20091791 http://dx.doi.org/10.1002/hbm.20956 |
Ejemplares similares
-
A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration
por: Henson, Richard N., et al.
Publicado: (2011) -
EEG and MEG Data Analysis in SPM8
por: Litvak, Vladimir, et al.
Publicado: (2011) -
Canonical Source Reconstruction for MEG
por: Mattout, Jérémie, et al.
Publicado: (2007) -
Comparing dynamic causal models of neurovascular coupling with fMRI and EEG/MEG
por: Jafarian, Amirhossein, et al.
Publicado: (2020) -
Bayesian MEG time courses with fMRI priors
por: Wang, Yingying, et al.
Publicado: (2021)