Cargando…
Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms
BACKGROUND: Data generated using 'omics' technologies are characterized by high dimensionality, where the number of features measured per subject vastly exceeds the number of subjects in the study. In this paper, we consider issues relevant in the design of biomedical studies in which the...
Autores principales: | Guo, Yu, Graber, Armin, McBurney, Robert N, Balasubramanian, Raji |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2942858/ https://www.ncbi.nlm.nih.gov/pubmed/20815881 http://dx.doi.org/10.1186/1471-2105-11-447 |
Ejemplares similares
-
Effects of Pooling Samples on the Performance of Classification Algorithms: A Comparative Study
por: Kusonmano, Kanthida, et al.
Publicado: (2012) -
Sample size and power considerations in network meta-analysis
por: Thorlund, Kristian, et al.
Publicado: (2012) -
Rasch fit statistics and sample size considerations for polytomous data
por: Smith, Adam B, et al.
Publicado: (2008) -
Effect Size Guidelines, Sample Size Calculations, and Statistical Power in Gerontology
por: Brydges, Christopher R
Publicado: (2019) -
Sample Size and Statistical Power Calculation in Genetic Association Studies
por: Hong, Eun Pyo, et al.
Publicado: (2012)