Cargando…
Determining and interpreting correlations in lipidomic networks found in glioblastoma cells
BACKGROUND: Intelligent and multitiered quantitative analysis of biological systems rapidly evolves to a key technique in studying biomolecular cancer aspects. Newly emerging advances in both measurement as well as bio-inspired computational techniques have facilitated the development of lipidomics...
Autores principales: | Görke, Robert, Meyer-Bäse, Anke, Wagner, Dorothea, He, Huan, Emmett, Mark R, Conrad, Charles A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944140/ https://www.ncbi.nlm.nih.gov/pubmed/20819237 http://dx.doi.org/10.1186/1752-0509-4-126 |
Ejemplares similares
-
Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks
por: Meyer-Bäse, Anke, et al.
Publicado: (2017) -
Differentiation of Glioblastoma and Brain Metastases by MRI-Based Oxygen Metabolomic Radiomics and Deep Learning
por: Stadlbauer, Andreas, et al.
Publicado: (2022) -
Current Status and Future Perspectives of Artificial Intelligence in Magnetic Resonance Breast Imaging
por: Meyer-Bäse, Anke, et al.
Publicado: (2020) -
Artificial Intelligence in Oncology: A Topical Collection in 2022
por: Stadlbauer, Andreas, et al.
Publicado: (2023) -
Spatial component analysis of MRI data for Alzheimer's disease diagnosis: a Bayesian network approach
por: Illan, Ignacio A., et al.
Publicado: (2014)