Cargando…
Development of a neural network model for predicting glucose levels in a surgical critical care setting
Development of neural network models for the prediction of glucose levels in critically ill patients through the application of continuous glucose monitoring may provide enhanced patient outcomes. Here we demonstrate the utilization of a predictive model in real-time bedside monitoring. Such modelin...
Autores principales: | Pappada, Scott M, Borst, Marilyn J, Cameron, Brent D, Bourey, Raymond E, Lather, Jason D, Shipp, Desmond, Chiricolo, Antonio, Papadimos, Thomas J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944194/ https://www.ncbi.nlm.nih.gov/pubmed/20828400 http://dx.doi.org/10.1186/1754-9493-4-15 |
Ejemplares similares
-
Evaluation of a Model for Glycemic Prediction in Critically Ill Surgical Patients
por: Pappada, Scott M., et al.
Publicado: (2013) -
Continuous glucose monitoring identifies relationship between optimized glycemic control and post-discharge acute care facility needs
por: Pappada, Scott M., et al.
Publicado: (2018) -
Presumed antiphospholipid syndrome and thrombotic thrombocytopenic purpura: An infrequent association
por: Dolin, Hallie Hanna, et al.
Publicado: (2019) -
Increasing patient safety with neonates via handoff communication during delivery: a call for interprofessional health care team training across GME and CME
por: Vanderbilt, Allison A, et al.
Publicado: (2017) -
Implementation of the "FASTHUG" concept decreases the incidence of ventilator-associated pneumonia in a surgical intensive care unit
por: Papadimos, Thomas J, et al.
Publicado: (2008)