Cargando…

Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda

The recently identified type VI secretion system (T6SS) is implicated in the virulence of many Gram-negative bacteria. Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also gastro- and extra-intestinal infections in humans. The E . tarda virulent protein (EVP) gene clus...

Descripción completa

Detalles Bibliográficos
Autores principales: Jobichen, Chacko, Chakraborty, Smarajit, Li, Mo, Zheng, Jun, Joseph, Lissa, Mok, Yu-Keung, Leung, Ka Yin, Sivaraman, J.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944823/
https://www.ncbi.nlm.nih.gov/pubmed/20886112
http://dx.doi.org/10.1371/journal.pone.0012910
_version_ 1782187135870173184
author Jobichen, Chacko
Chakraborty, Smarajit
Li, Mo
Zheng, Jun
Joseph, Lissa
Mok, Yu-Keung
Leung, Ka Yin
Sivaraman, J.
author_facet Jobichen, Chacko
Chakraborty, Smarajit
Li, Mo
Zheng, Jun
Joseph, Lissa
Mok, Yu-Keung
Leung, Ka Yin
Sivaraman, J.
author_sort Jobichen, Chacko
collection PubMed
description The recently identified type VI secretion system (T6SS) is implicated in the virulence of many Gram-negative bacteria. Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also gastro- and extra-intestinal infections in humans. The E . tarda virulent protein (EVP) gene cluster encodes a conserved T6SS which contains 16 open reading frames. EvpC is one of the three major EVP secreted proteins and shares high sequence similarity with Hcp1, a key T6SS virulence factor from Pseudomonas aeruginosa. EvpC contributes to the virulence of E. tarda by playing an essential role in functional T6SS. Here, we report the crystal structure of EvpC from E. tarda PPD130/91 at a 2.8 Å resolution, along with functional studies of the protein. EvpC has a β-barrel domain with extended loops. The β-barrel consists of 11 anti-parallel β-strands with an α-helix located on one side. In solution, EvpC exists as a dimer at low concentration and as a hexamer at higher concentration. In the crystal, the symmetry related EvpC molecules form hexameric rings which stack together to form a tube similar to Hcp1. Structure based mutagenesis revealed that N-terminal negatively charged residues, Asp4, Glu15 and Glu26, and C-terminal positively charged residues, Lys161, Lys162 and Lys163, played crucial roles in the secretion of EvpC. Moreover, the localization study indicates the presence of wild type EvpC in cytoplasm, periplasm and secreted fractions, whereas the N-terminal and C-terminal mutants were found mostly in the periplasmic region and was completely absent in the secreted fraction. Results reported here provide insight into the structure, assembly and function of EvpC. Further, these findings can be extended to other EvpC homologs for understanding the mechanism of T6SS and targeting T6SS mediated virulence in Gram-negative pathogens.
format Text
id pubmed-2944823
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-29448232010-09-30 Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda Jobichen, Chacko Chakraborty, Smarajit Li, Mo Zheng, Jun Joseph, Lissa Mok, Yu-Keung Leung, Ka Yin Sivaraman, J. PLoS One Research Article The recently identified type VI secretion system (T6SS) is implicated in the virulence of many Gram-negative bacteria. Edwardsiella tarda is an important cause of hemorrhagic septicemia in fish and also gastro- and extra-intestinal infections in humans. The E . tarda virulent protein (EVP) gene cluster encodes a conserved T6SS which contains 16 open reading frames. EvpC is one of the three major EVP secreted proteins and shares high sequence similarity with Hcp1, a key T6SS virulence factor from Pseudomonas aeruginosa. EvpC contributes to the virulence of E. tarda by playing an essential role in functional T6SS. Here, we report the crystal structure of EvpC from E. tarda PPD130/91 at a 2.8 Å resolution, along with functional studies of the protein. EvpC has a β-barrel domain with extended loops. The β-barrel consists of 11 anti-parallel β-strands with an α-helix located on one side. In solution, EvpC exists as a dimer at low concentration and as a hexamer at higher concentration. In the crystal, the symmetry related EvpC molecules form hexameric rings which stack together to form a tube similar to Hcp1. Structure based mutagenesis revealed that N-terminal negatively charged residues, Asp4, Glu15 and Glu26, and C-terminal positively charged residues, Lys161, Lys162 and Lys163, played crucial roles in the secretion of EvpC. Moreover, the localization study indicates the presence of wild type EvpC in cytoplasm, periplasm and secreted fractions, whereas the N-terminal and C-terminal mutants were found mostly in the periplasmic region and was completely absent in the secreted fraction. Results reported here provide insight into the structure, assembly and function of EvpC. Further, these findings can be extended to other EvpC homologs for understanding the mechanism of T6SS and targeting T6SS mediated virulence in Gram-negative pathogens. Public Library of Science 2010-09-23 /pmc/articles/PMC2944823/ /pubmed/20886112 http://dx.doi.org/10.1371/journal.pone.0012910 Text en Jobichen et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Jobichen, Chacko
Chakraborty, Smarajit
Li, Mo
Zheng, Jun
Joseph, Lissa
Mok, Yu-Keung
Leung, Ka Yin
Sivaraman, J.
Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title_full Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title_fullStr Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title_full_unstemmed Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title_short Structural Basis for the Secretion of EvpC: A Key Type VI Secretion System Protein from Edwardsiella tarda
title_sort structural basis for the secretion of evpc: a key type vi secretion system protein from edwardsiella tarda
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944823/
https://www.ncbi.nlm.nih.gov/pubmed/20886112
http://dx.doi.org/10.1371/journal.pone.0012910
work_keys_str_mv AT jobichenchacko structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT chakrabortysmarajit structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT limo structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT zhengjun structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT josephlissa structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT mokyukeung structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT leungkayin structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda
AT sivaramanj structuralbasisforthesecretionofevpcakeytypevisecretionsystemproteinfromedwardsiellatarda