Cargando…

Quantification of the Frequency and Multiplicity of Infection of Respiratory- and Lymph Node–Resident Dendritic Cells During Influenza Virus Infection

BACKGROUND: Previous studies have demonstrated that DC differentially regulate influenza A virus (IAV)–specific CD8 T cell responses in vivo during high and low dose IAV infections. Furthermore, in vitro infection of DC with IAV at low versus high multiplicities of infection (MOI) results in altered...

Descripción completa

Detalles Bibliográficos
Autores principales: VanOosten Anderson, Rebecca, McGill, Jodi, Legge, Kevin L.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944834/
https://www.ncbi.nlm.nih.gov/pubmed/20886117
http://dx.doi.org/10.1371/journal.pone.0012902
Descripción
Sumario:BACKGROUND: Previous studies have demonstrated that DC differentially regulate influenza A virus (IAV)–specific CD8 T cell responses in vivo during high and low dose IAV infections. Furthermore, in vitro infection of DC with IAV at low versus high multiplicities of infection (MOI) results in altered cytokine production and a reduced ability to prime naïve CD8 T cell responses. Flow cytometric detection of IAV proteins within DC, a commonly used method for detection of cellular IAV infection, does not distinguish between the direct infection of these cells or their uptake of viral proteins from dying epithelial cells. METHODS/PRINCIPAL FINDINGS: We have developed a novel, sensitive, single-cell RT-PCR–based approach to assess the infection of respiratory DC (rDC) and lymph node (LN)-resident DC (LNDC) following high and low dose IAV infections. Our results show that, while a fraction of both rDC and LNDC contain viral mRNA following IAV infection, there is little correlation between the percentage of rDC containing viral mRNA and the initial IAV inoculum dose. Instead, increasing IAV inoculums correlate with augmented rDC MOI. CONCLUSION/SIGNIFICANCE: Together, our results demonstrate a novel and sensitive method for the detection of direct IAV infection at the single-cell level and suggest that the previously described ability of DC to differentially regulate IAV-specific T cell responses during high and low dose IAV infections could relate to the MOI of rDC within the LN rather than the percentage of rDC infected.