Cargando…

Generation of IL-23 Producing Dendritic Cells (DCs) by Airborne Fungi Regulates Fungal Pathogenicity via the Induction of T(H)-17 Responses

Interleukin-17 (IL-17) producing T helper cells (T(H)-17) comprise a newly recognized T cell subset with an emerging role in adaptive immunity to a variety of fungi. Whether different airborne fungi trigger a common signaling pathway for T(H)-17 induction, and whether this ability is related to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chamilos, Georgios, Ganguly, Dipyaman, Lande, Roberto, Gregorio, Josh, Meller, Stephan, Goldman, William E., Gilliet, Michel, Kontoyiannis, Dimitrios P.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944889/
https://www.ncbi.nlm.nih.gov/pubmed/20886035
http://dx.doi.org/10.1371/journal.pone.0012955
Descripción
Sumario:Interleukin-17 (IL-17) producing T helper cells (T(H)-17) comprise a newly recognized T cell subset with an emerging role in adaptive immunity to a variety of fungi. Whether different airborne fungi trigger a common signaling pathway for T(H)-17 induction, and whether this ability is related to the inherent pathogenic behavior of each fungus is currently unknown. Here we show that, as opposed to primary pathogenic fungi (Histoplasma capsulatum), opportunistic fungal pathogens (Aspergillus and Rhizopus) trigger a common innate sensing pathway in human dendritic cells (DCs) that results in robust production of IL-23 and drives T(H)-17 responses. This response requires activation of dectin-1 by the fungal cell wall polysaccharide b-glucan that is selectively exposed during the invasive growth of opportunistic fungi. Notably, unmasking of b-glucan in the cell wall of a mutant of Histoplasma not only abrogates the pathogenicity of this fungus, but also triggers the induction of IL-23 producing DCs. Thus, b-glucan exposure in the fungal cell wall is essential for the induction of IL-23/T(H)-17 axis and may represent a key factor that regulates protective immunity to opportunistic but not pathogenic fungi.