Cargando…

A Bayesian Generative Model for Surface Template Estimation

3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jun, Miller, Michael I., Younes, Laurent
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946602/
https://www.ncbi.nlm.nih.gov/pubmed/20885934
http://dx.doi.org/10.1155/2010/974957
_version_ 1782187311485681664
author Ma, Jun
Miller, Michael I.
Younes, Laurent
author_facet Ma, Jun
Miller, Michael I.
Younes, Laurent
author_sort Ma, Jun
collection PubMed
description 3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations of random surfaces. We develop a mode approximation EM algorithm to infer the maximum a posteriori estimation of initial momentum μ, which determines the template surface. Experimental results of caudate, thalamus, and hippocampus data are presented.
format Text
id pubmed-2946602
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-29466022010-09-30 A Bayesian Generative Model for Surface Template Estimation Ma, Jun Miller, Michael I. Younes, Laurent Int J Biomed Imaging Research Article 3D surfaces are important geometric models for many objects of interest in image analysis and Computational Anatomy. In this paper, we describe a Bayesian inference scheme for estimating a template surface from a set of observed surface data. In order to achieve this, we use the geodesic shooting approach to construct a statistical model for the generation and the observations of random surfaces. We develop a mode approximation EM algorithm to infer the maximum a posteriori estimation of initial momentum μ, which determines the template surface. Experimental results of caudate, thalamus, and hippocampus data are presented. Hindawi Publishing Corporation 2010 2010-09-20 /pmc/articles/PMC2946602/ /pubmed/20885934 http://dx.doi.org/10.1155/2010/974957 Text en Copyright © 2010 Jun Ma et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ma, Jun
Miller, Michael I.
Younes, Laurent
A Bayesian Generative Model for Surface Template Estimation
title A Bayesian Generative Model for Surface Template Estimation
title_full A Bayesian Generative Model for Surface Template Estimation
title_fullStr A Bayesian Generative Model for Surface Template Estimation
title_full_unstemmed A Bayesian Generative Model for Surface Template Estimation
title_short A Bayesian Generative Model for Surface Template Estimation
title_sort bayesian generative model for surface template estimation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946602/
https://www.ncbi.nlm.nih.gov/pubmed/20885934
http://dx.doi.org/10.1155/2010/974957
work_keys_str_mv AT majun abayesiangenerativemodelforsurfacetemplateestimation
AT millermichaeli abayesiangenerativemodelforsurfacetemplateestimation
AT youneslaurent abayesiangenerativemodelforsurfacetemplateestimation
AT majun bayesiangenerativemodelforsurfacetemplateestimation
AT millermichaeli bayesiangenerativemodelforsurfacetemplateestimation
AT youneslaurent bayesiangenerativemodelforsurfacetemplateestimation