Cargando…
Inferring Regulatory Networks from Expression Data Using Tree-Based Methods
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challeng...
Autores principales: | Huynh-Thu, Vân Anh, Irrthum, Alexandre, Wehenkel, Louis, Geurts, Pierre |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946910/ https://www.ncbi.nlm.nih.gov/pubmed/20927193 http://dx.doi.org/10.1371/journal.pone.0012776 |
Ejemplares similares
-
Classifying pairs with trees for supervised biological network inference
por: Schrynemackers, Marie, et al.
Publicado: (2015) -
Combining tree-based and dynamical systems for the inference of gene regulatory networks
por: Huynh-Thu, Vân Anh, et al.
Publicado: (2015) -
dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data
por: Huynh-Thu, Vân Anh, et al.
Publicado: (2018) -
NIMEFI: Gene Regulatory Network Inference using Multiple Ensemble Feature Importance Algorithms
por: Ruyssinck, Joeri, et al.
Publicado: (2014) -
SCENIC: Single-cell regulatory network inference and clustering
por: Aibar, Sara, et al.
Publicado: (2017)