Cargando…

Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes

BACKGROUND: The NADPH redox cycle plays a key role in antioxidant protection of human erythrocytes. It consists of two enzymes: glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase. Over 160 G6PD variants have been characterized and associated with several distinct clinical manifestati...

Descripción completa

Detalles Bibliográficos
Autores principales: Coelho, Pedro M. B. M., Salvador, Armindo, Savageau, Michael A.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946920/
https://www.ncbi.nlm.nih.gov/pubmed/20927393
http://dx.doi.org/10.1371/journal.pone.0013031
_version_ 1782187346212421632
author Coelho, Pedro M. B. M.
Salvador, Armindo
Savageau, Michael A.
author_facet Coelho, Pedro M. B. M.
Salvador, Armindo
Savageau, Michael A.
author_sort Coelho, Pedro M. B. M.
collection PubMed
description BACKGROUND: The NADPH redox cycle plays a key role in antioxidant protection of human erythrocytes. It consists of two enzymes: glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase. Over 160 G6PD variants have been characterized and associated with several distinct clinical manifestations. However, the mechanistic link between the genotype and the phenotype remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We address this issue through a novel framework (design space) that integrates information at the genetic, biochemical and clinical levels. Our analysis predicts three qualitatively-distinct phenotypic regions that can be ranked according to fitness. When G6PD variants are analyzed in design space, a correlation is revealed between the phenotypic region and the clinical manifestation: the best region with normal physiology, the second best region with a pathology, and the worst region with a potential lethality. We also show that Plasmodium falciparum, by induction of its own G6PD gene in G6PD-deficient erythrocytes, moves the operation of the cycle to a region of the design space that yields robust performance. CONCLUSIONS/SIGNIFICANCE: In conclusion, the design space for the NADPH redox cycle, which includes relationships among genotype, phenotype and environment, illuminates the function, design and fitness of the cycle, and its phenotypic regions correlate with the organism's clinical status.
format Text
id pubmed-2946920
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-29469202010-10-06 Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes Coelho, Pedro M. B. M. Salvador, Armindo Savageau, Michael A. PLoS One Research Article BACKGROUND: The NADPH redox cycle plays a key role in antioxidant protection of human erythrocytes. It consists of two enzymes: glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase. Over 160 G6PD variants have been characterized and associated with several distinct clinical manifestations. However, the mechanistic link between the genotype and the phenotype remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We address this issue through a novel framework (design space) that integrates information at the genetic, biochemical and clinical levels. Our analysis predicts three qualitatively-distinct phenotypic regions that can be ranked according to fitness. When G6PD variants are analyzed in design space, a correlation is revealed between the phenotypic region and the clinical manifestation: the best region with normal physiology, the second best region with a pathology, and the worst region with a potential lethality. We also show that Plasmodium falciparum, by induction of its own G6PD gene in G6PD-deficient erythrocytes, moves the operation of the cycle to a region of the design space that yields robust performance. CONCLUSIONS/SIGNIFICANCE: In conclusion, the design space for the NADPH redox cycle, which includes relationships among genotype, phenotype and environment, illuminates the function, design and fitness of the cycle, and its phenotypic regions correlate with the organism's clinical status. Public Library of Science 2010-09-28 /pmc/articles/PMC2946920/ /pubmed/20927393 http://dx.doi.org/10.1371/journal.pone.0013031 Text en Coelho et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Coelho, Pedro M. B. M.
Salvador, Armindo
Savageau, Michael A.
Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title_full Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title_fullStr Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title_full_unstemmed Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title_short Relating Mutant Genotype to Phenotype via Quantitative Behavior of the NADPH Redox Cycle in Human Erythrocytes
title_sort relating mutant genotype to phenotype via quantitative behavior of the nadph redox cycle in human erythrocytes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946920/
https://www.ncbi.nlm.nih.gov/pubmed/20927393
http://dx.doi.org/10.1371/journal.pone.0013031
work_keys_str_mv AT coelhopedrombm relatingmutantgenotypetophenotypeviaquantitativebehaviorofthenadphredoxcycleinhumanerythrocytes
AT salvadorarmindo relatingmutantgenotypetophenotypeviaquantitativebehaviorofthenadphredoxcycleinhumanerythrocytes
AT savageaumichaela relatingmutantgenotypetophenotypeviaquantitativebehaviorofthenadphredoxcycleinhumanerythrocytes