Cargando…

IL-10 inhibits transcription elongation of the human TNF gene in primary macrophages

IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through...

Descripción completa

Detalles Bibliográficos
Autores principales: Smallie, Tim, Ricchetti, Giuseppe, Horwood, Nicole J., Feldmann, Marc, Clark, Andrew R., Williams, Lynn M.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947066/
https://www.ncbi.nlm.nih.gov/pubmed/20805562
http://dx.doi.org/10.1084/jem.20100414
Descripción
Sumario:IL-10 plays a central nonredundant role in limiting inflammation in vivo. However, the mechanisms involved remain to be resolved. Using primary human macrophages, we found that IL-10 inhibits selected inflammatory genes, primarily at a level of transcription. At the TNF gene, this occurs not through an inhibition of RNA polymerase II (Pol II) recruitment and transcription initiation but through a mechanism targeting the stimulation of transcription elongation by cyclin-dependent kinase (CDK) 9. We demonstrated an unanticipated requirement for a region downstream of the TNF 3′ untranslated region (UTR) that contains the nuclear factor κB (NF-κB) binding motif (κB4) both for induction of transcription by lipopolysaccharide (LPS) and its inhibition by IL-10. IL-10 not only inhibits the recruitment of RelA to regions containing κB sites at the TNF gene but also to those found at other LPS-induced genes. We show that although IL-10 elicits a general block in RelA recruitment to its genomic targets, the gene-specific nature of IL-10’s actions are defined through the differential recruitment of CDK9 and the control of transcription elongation. At TNF, but not NFKBIA, the consequence of RelA recruitment inhibition is a loss of CDK9 recruitment, preventing the stimulation of transcription elongation.