Cargando…

Biosensor measurement of purine release from cerebellar cultures and slices

We have previously described an action-potential and Ca(2+)-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wall, Mark, Eason, Robert, Dale, Nicholas
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947654/
https://www.ncbi.nlm.nih.gov/pubmed/21103217
http://dx.doi.org/10.1007/s11302-010-9185-8
Descripción
Sumario:We have previously described an action-potential and Ca(2+)-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whether cultured granule cells (from postnatal day 7–8 rats) can release adenosine. Although no purine release could be detected in response to focal electrical stimulation, purine (adenosine, inosine or hypoxanthine) release occurred in response to an increase in extracellular K(+) concentration from 3 to 25 mM coupled with addition of 1 mM glutamate. The mechanism of purine release was transport from the cytoplasm via an ENT transporter. This process did not require action-potential firing but was Ca(2+)dependent. The major purine released was not adenosine, but was either inosine or hypoxanthine. In order for inosine/hypoxanthine release to occur, cultures had to contain both granule cells and glial cells; neither cellular component was sufficient alone. Using the same stimulus in cerebellar slices (postnatal day 7–25), it was possible to release purines. The release however was not blocked by ENT blockers and there was a shift in the Ca(2+) dependence during development. This data from cultures and slices further illustrates the complexities of purine release, which is dependent on cellular composition and developmental stage.