Cargando…

Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study

The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventi...

Descripción completa

Detalles Bibliográficos
Autores principales: Okser, Sebastian, Lehtimäki, Terho, Elo, Laura L., Mononen, Nina, Peltonen, Nina, Kähönen, Mika, Juonala, Markus, Fan, Yue-Mei, Hernesniemi, Jussi A., Laitinen, Tomi, Lyytikäinen, Leo-Pekka, Rontu, Riikka, Eklund, Carita, Hutri-Kähönen, Nina, Taittonen, Leena, Hurme, Mikko, Viikari, Jorma S. A., Raitakari, Olli T., Aittokallio, Tero
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947986/
https://www.ncbi.nlm.nih.gov/pubmed/20941391
http://dx.doi.org/10.1371/journal.pgen.1001146
_version_ 1782187406368178176
author Okser, Sebastian
Lehtimäki, Terho
Elo, Laura L.
Mononen, Nina
Peltonen, Nina
Kähönen, Mika
Juonala, Markus
Fan, Yue-Mei
Hernesniemi, Jussi A.
Laitinen, Tomi
Lyytikäinen, Leo-Pekka
Rontu, Riikka
Eklund, Carita
Hutri-Kähönen, Nina
Taittonen, Leena
Hurme, Mikko
Viikari, Jorma S. A.
Raitakari, Olli T.
Aittokallio, Tero
author_facet Okser, Sebastian
Lehtimäki, Terho
Elo, Laura L.
Mononen, Nina
Peltonen, Nina
Kähönen, Mika
Juonala, Markus
Fan, Yue-Mei
Hernesniemi, Jussi A.
Laitinen, Tomi
Lyytikäinen, Leo-Pekka
Rontu, Riikka
Eklund, Carita
Hutri-Kähönen, Nina
Taittonen, Leena
Hurme, Mikko
Viikari, Jorma S. A.
Raitakari, Olli T.
Aittokallio, Tero
author_sort Okser, Sebastian
collection PubMed
description The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis.
format Text
id pubmed-2947986
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-29479862010-10-12 Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study Okser, Sebastian Lehtimäki, Terho Elo, Laura L. Mononen, Nina Peltonen, Nina Kähönen, Mika Juonala, Markus Fan, Yue-Mei Hernesniemi, Jussi A. Laitinen, Tomi Lyytikäinen, Leo-Pekka Rontu, Riikka Eklund, Carita Hutri-Kähönen, Nina Taittonen, Leena Hurme, Mikko Viikari, Jorma S. A. Raitakari, Olli T. Aittokallio, Tero PLoS Genet Research Article The relative contribution of genetic risk factors to the progression of subclinical atherosclerosis is poorly understood. It is likely that multiple variants are implicated in the development of atherosclerosis, but the subtle genotypic and phenotypic differences are beyond the reach of the conventional case-control designs and the statistical significance testing procedures being used in most association studies. Our objective here was to investigate whether an alternative approach—in which common disorders are treated as quantitative phenotypes that are continuously distributed over a population—can reveal predictive insights into the early atherosclerosis, as assessed using ultrasound imaging-based quantitative measurement of carotid artery intima-media thickness (IMT). Using our population-based follow-up study of atherosclerosis precursors as a basis for sampling subjects with gradually increasing IMT levels, we searched for such subsets of genetic variants and their interactions that are the most predictive of the various risk classes, rather than using exclusively those variants meeting a stringent level of statistical significance. The area under the receiver operating characteristic curve (AUC) was used to evaluate the predictive value of the variants, and cross-validation was used to assess how well the predictive models will generalize to other subsets of subjects. By means of our predictive modeling framework with machine learning-based SNP selection, we could improve the prediction of the extreme classes of atherosclerosis risk and progression over a 6-year period (average AUC 0.844 and 0.761), compared to that of using conventional cardiovascular risk factors alone (average AUC 0.741 and 0.629), or when combined with the statistically significant variants (average AUC 0.762 and 0.651). The predictive accuracy remained relatively high in an independent validation set of subjects (average decrease of 0.043). These results demonstrate that the modeling framework can utilize the “gray zone” of genetic variation in the classification of subjects with different degrees of risk of developing atherosclerosis. Public Library of Science 2010-09-30 /pmc/articles/PMC2947986/ /pubmed/20941391 http://dx.doi.org/10.1371/journal.pgen.1001146 Text en Okser et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Okser, Sebastian
Lehtimäki, Terho
Elo, Laura L.
Mononen, Nina
Peltonen, Nina
Kähönen, Mika
Juonala, Markus
Fan, Yue-Mei
Hernesniemi, Jussi A.
Laitinen, Tomi
Lyytikäinen, Leo-Pekka
Rontu, Riikka
Eklund, Carita
Hutri-Kähönen, Nina
Taittonen, Leena
Hurme, Mikko
Viikari, Jorma S. A.
Raitakari, Olli T.
Aittokallio, Tero
Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title_full Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title_fullStr Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title_full_unstemmed Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title_short Genetic Variants and Their Interactions in the Prediction of Increased Pre-Clinical Carotid Atherosclerosis: The Cardiovascular Risk in Young Finns Study
title_sort genetic variants and their interactions in the prediction of increased pre-clinical carotid atherosclerosis: the cardiovascular risk in young finns study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947986/
https://www.ncbi.nlm.nih.gov/pubmed/20941391
http://dx.doi.org/10.1371/journal.pgen.1001146
work_keys_str_mv AT oksersebastian geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT lehtimakiterho geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT elolaural geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT mononennina geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT peltonennina geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT kahonenmika geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT juonalamarkus geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT fanyuemei geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT hernesniemijussia geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT laitinentomi geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT lyytikainenleopekka geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT ronturiikka geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT eklundcarita geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT hutrikahonennina geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT taittonenleena geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT hurmemikko geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT viikarijormasa geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT raitakariollit geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy
AT aittokalliotero geneticvariantsandtheirinteractionsinthepredictionofincreasedpreclinicalcarotidatherosclerosisthecardiovascularriskinyoungfinnsstudy