Cargando…

Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hsiao-Ching, Ju, Hen-Yi, Wu, Tsung-Ta, Liu, Yung-Chuan, Lee, Chih-Chen, Chang, Cheng, Chung, Yi-Lin, Shieh, Chwen-Jen
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2948937/
https://www.ncbi.nlm.nih.gov/pubmed/20936129
http://dx.doi.org/10.1155/2011/950725
Descripción
Sumario:An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.