Cargando…

MicroRNA-200 Family Members Differentially Regulate Morphological Plasticity and Mode of Melanoma Cell Invasion

BACKGROUND: A functional role of microRNAs (miRNAs or miRs) in neoplasia and metastasis is becoming clear, and the miR-200 family has received much attention for potentially regulating tumor progression. The miRNAs of this family have been shown to suppress epithelial-mesenchymal transition, and the...

Descripción completa

Detalles Bibliográficos
Autores principales: Elson-Schwab, Ilan, Lorentzen, Anna, Marshall, Christopher J.
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949394/
https://www.ncbi.nlm.nih.gov/pubmed/20957176
http://dx.doi.org/10.1371/journal.pone.0013176
Descripción
Sumario:BACKGROUND: A functional role of microRNAs (miRNAs or miRs) in neoplasia and metastasis is becoming clear, and the miR-200 family has received much attention for potentially regulating tumor progression. The miRNAs of this family have been shown to suppress epithelial-mesenchymal transition, and their down-regulation in some tumors promotes invasion and metastasis. Interestingly, while miR-200 is down-regulated in some cancers, it is up-regulated in others. PRINCIPAL FINDINGS: We show that levels of miR-200 are increased in melanoma cell lines compared to normal melanocytes and that miR-200 family members play a role in determining modes of tumor cell migration. Individual tumor cells can invade in either elongated, “mesenchymal-type” or rounded, “amoeboid-like” modes and these two modes of invasion are inter-convertible [1]. In melanoma cell lines, expression of miR-200 members does not suppress invasion but rather leads to a switch between modes of invasion. MicroRNA-200c results in a higher proportion of cells adopting the rounded, amoeboid-like mode of invasion, while miR-200a results in a protrusion-associated elongated mode of invasion. Functional target identification studies suggest that the morphological effects of miR-200c may be mediated by reduced expression of MARCKS, which has been linked to formation of cell protrusions. In contrast miR-200a reduces actomyosin contractility, a feature of rounded morphology. SIGNIFICANCE: Overall our findings call into question the general role of miR-200 in suppressing invasion and metastasis, and highlight novel distinguishing characteristics of individual miR-200 family members.