Cargando…

Protective Mechanism of KIOM-4 in Streptozotocin-Induced Pancreatic β-Cells Damage Is Involved in the Inhibition of Endoplasmic Reticulum Stress

Endoplasmic reticulum stress-mediated apoptosis plays an important role in the destruction of pancreatic β-cells and contributes to the development of type 1 diabetes. The present study examined the effect of KIOM-4, a mixture of four plant extracts, on streptozotocin- (STZ-) induced endoplasmic ret...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Kim, Jin Sook, Kang, Kyoung Ah, Piao, Mei Jing, Kim, Ki Cheon, Hyun, Jin Won
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949593/
https://www.ncbi.nlm.nih.gov/pubmed/20924496
http://dx.doi.org/10.1155/2011/231938
Descripción
Sumario:Endoplasmic reticulum stress-mediated apoptosis plays an important role in the destruction of pancreatic β-cells and contributes to the development of type 1 diabetes. The present study examined the effect of KIOM-4, a mixture of four plant extracts, on streptozotocin- (STZ-) induced endoplasmic reticulum (ER) stress in rat pancreatic β-cells (RINm5F). KIOM-4 was found to inhibit STZ-induced apoptotic cell death, confirmed by formation of apoptotic bodies and DNA fragmentation. STZ was found to induce the characteristics of ER stress; mitochondrial Ca(2+) overloading, enhanced ER staining, release of glucose-regulated protein 78 (GRP78), phosphorylation of RNA-dependent protein kinase (PKR) like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF-2α), cleavage of activating transcription factor 6 (ATF6) and caspase 12, and upregulation of CCAAT/enhancer-binding protein-homologous protein (CHOP). However, KIOM-4 attenuated these changes induced by STZ. Furthermore, KIOM-4 suppressed apoptosis induced by STZ in CHOP downregulated cells using CHOP siRNA. These results suggest that KIOM-4 exhibits protective effects in STZ-induced pancreatic β-cell damage, by interrupting the ER stress-mediated pathway.