Cargando…
Periodic pattern detection in sparse boolean sequences
BACKGROUND: The specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various peri...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949599/ https://www.ncbi.nlm.nih.gov/pubmed/20831781 http://dx.doi.org/10.1186/1748-7188-5-31 |
_version_ | 1782187532242386944 |
---|---|
author | Junier, Ivan Hérisson, Joan Képès, François |
author_facet | Junier, Ivan Hérisson, Joan Képès, François |
author_sort | Junier, Ivan |
collection | PubMed |
description | BACKGROUND: The specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various periodic trends. In many cases, however, groups built up from co-functional or co-regulated genes are small and contain wrong information (data contamination) so that the statistics is poorly exploitable. In addition, gene positions are not expected to satisfy a perfectly ordered pattern along the DNA. Within this scope, we present an algorithm that aims to highlight periodic patterns in sparse boolean sequences, i.e. sequences of the type 010011011010... where the ratio of the number of 1's (denoting here the transcription start of a gene) to 0's is small. RESULTS: The algorithm is particularly robust with respect to strong signal distortions such as the addition of 1's at arbitrary positions (contaminated data), the deletion of existing 1's in the sequence (missing data) and the presence of disorder in the position of the 1's (noise). This robustness property stems from an appropriate exploitation of the remarkable alignment properties of periodic points in solenoidal coordinates. CONCLUSIONS: The efficiency of the algorithm is demonstrated in situations where standard Fourier-based spectral methods are poorly adapted. We also show how the proposed framework allows to identify the 1's that participate in the periodic trends, i.e. how the framework allows to allocate a positional score to genes, in the same spirit of the sequence score. The software is available for public use at http://www.issb.genopole.fr/MEGA/Softwares/iSSB_SolenoidalApplication.zip. |
format | Text |
id | pubmed-2949599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-29495992010-11-03 Periodic pattern detection in sparse boolean sequences Junier, Ivan Hérisson, Joan Képès, François Algorithms Mol Biol Software Article BACKGROUND: The specific position of functionally related genes along the DNA has been shown to reflect the interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the distances separating such genes, several studies have highlighted various periodic trends. In many cases, however, groups built up from co-functional or co-regulated genes are small and contain wrong information (data contamination) so that the statistics is poorly exploitable. In addition, gene positions are not expected to satisfy a perfectly ordered pattern along the DNA. Within this scope, we present an algorithm that aims to highlight periodic patterns in sparse boolean sequences, i.e. sequences of the type 010011011010... where the ratio of the number of 1's (denoting here the transcription start of a gene) to 0's is small. RESULTS: The algorithm is particularly robust with respect to strong signal distortions such as the addition of 1's at arbitrary positions (contaminated data), the deletion of existing 1's in the sequence (missing data) and the presence of disorder in the position of the 1's (noise). This robustness property stems from an appropriate exploitation of the remarkable alignment properties of periodic points in solenoidal coordinates. CONCLUSIONS: The efficiency of the algorithm is demonstrated in situations where standard Fourier-based spectral methods are poorly adapted. We also show how the proposed framework allows to identify the 1's that participate in the periodic trends, i.e. how the framework allows to allocate a positional score to genes, in the same spirit of the sequence score. The software is available for public use at http://www.issb.genopole.fr/MEGA/Softwares/iSSB_SolenoidalApplication.zip. BioMed Central 2010-09-10 /pmc/articles/PMC2949599/ /pubmed/20831781 http://dx.doi.org/10.1186/1748-7188-5-31 Text en Copyright ©2010 Junier et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Software Article Junier, Ivan Hérisson, Joan Képès, François Periodic pattern detection in sparse boolean sequences |
title | Periodic pattern detection in sparse boolean sequences |
title_full | Periodic pattern detection in sparse boolean sequences |
title_fullStr | Periodic pattern detection in sparse boolean sequences |
title_full_unstemmed | Periodic pattern detection in sparse boolean sequences |
title_short | Periodic pattern detection in sparse boolean sequences |
title_sort | periodic pattern detection in sparse boolean sequences |
topic | Software Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949599/ https://www.ncbi.nlm.nih.gov/pubmed/20831781 http://dx.doi.org/10.1186/1748-7188-5-31 |
work_keys_str_mv | AT junierivan periodicpatterndetectioninsparsebooleansequences AT herissonjoan periodicpatterndetectioninsparsebooleansequences AT kepesfrancois periodicpatterndetectioninsparsebooleansequences |