Cargando…
"Brace Technology" Thematic Series - The ScoliOlogiC(® )Chêneau light™ brace in the treatment of scoliosis
BACKGROUND: Bracing concepts in use today for the treatment of scoliosis include symmetric and asymmetric hard braces usually made of polyethylene (PE) and soft braces. The plaster cast method worldwide seems to be the most practiced technique for the construction of hard braces at the moment. CAD (...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949601/ https://www.ncbi.nlm.nih.gov/pubmed/20819210 http://dx.doi.org/10.1186/1748-7161-5-19 |
Sumario: | BACKGROUND: Bracing concepts in use today for the treatment of scoliosis include symmetric and asymmetric hard braces usually made of polyethylene (PE) and soft braces. The plaster cast method worldwide seems to be the most practiced technique for the construction of hard braces at the moment. CAD (Computer Aided Design) systems are available which allow brace adjustments without plaster. Another possibility is the use of the ScoliOlogiC™ off the shelf system enabling the Certified Prosthetist and Orthotist (CPO) to construct a light brace for scoliosis correction from a variety of pattern specific shells to be connected to an anterior and a posterior upright. This Chêneau light™ brace, developed according to the Chêneau principles, promises a reduced impediment of quality of life in the brace. The correction effects of the first 81 patients (main diagnosis Adolescent Idiopathic Scoliosis (AIS) [n = 64] or Early Onset Scoliosis (EOS) [n = 15]), treated according to the principles of the Chêneau light™ brace have shown a satisfactory in-brace correction exceeding 50% of the initial Cobb angle. BRACE DESCRIPTION: The ScoliOlogiC(® )off the shelf bracing system enables the CPO to construct a light brace for scoliosis correction from a variety of pattern specific shells to be connected to an anterior and a posterior upright. This brace, when finally adjusted is called Chêneau light™ brace. The advantage of this new bracing system is that the brace is available immediately, is easily adjustable and that it can also be easily modified. This avoids construction periods of sometimes more than 6 weeks, where the curve may drastically increase during periods of fast growth. The disadvantage of this bracing system is that there is a wide variability of possibilities to arrange the different shells during adjustment. RESULTS: The Cobb angle in the whole group was reduced by an average of 16,4°, which corresponds to a correction effect of 51%. The differences were highly significant in the T-test (T = 17,4; p < 0,001). The best correction effects achieved with Chêneau braces reported in literature so far are about 40% in two different studies. The correction effect was highest in lumbar and thoracolumbar curve patterns (62%; n = 18). In thoracic scoliosis the correction effect was 36% (n = 41) and in double major curve patterns 50% (n = 22). The correction effect was affected in a slightly negative way due to age (r = -0,24; p = 0,014), negatively with the Risser stage (-0,29; p = 0,0096) and correlated negatively with the Cobb angle measured before treatment (r = -0,43; p < 0,0001). CONCLUSIONS: The use of the Chêneau light™ brace leads to correction effects above average when compared to correction effects of other braces described in literature. The reduction of material seems to increase patient's comfort and reduces the stress patients may suffer from whilst in the brace. 80% of the adolescent population of scoliosis patients can be braced with the Chêneau light™ brace. In certain patterns of curvature and in the younger population with an age of less than 11 years, other approaches have to be used, such as plaster based bracing or the application of CAD/CAM based orthoses. |
---|