Cargando…
Simple and flexible classification of gene expression microarrays via Swirls and Ripples
BACKGROUND: A simple classification rule with few genes and parameters is desirable when applying a classification rule to new data. One popular simple classification rule, diagonal discriminant analysis, yields linear or curved classification boundaries, called Ripples, that are optimal when gene e...
Autor principal: | Baker, Stuart G |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949887/ https://www.ncbi.nlm.nih.gov/pubmed/20825641 http://dx.doi.org/10.1186/1471-2105-11-452 |
Ejemplares similares
-
A simple method for statistical analysis of intensity differences in microarray-derived gene expression data
por: Kamb, Alexander, et al.
Publicado: (2001) -
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
por: Zhao, Xin, et al.
Publicado: (2007) -
A flexible representation of omic knowledge for thorough analysis of microarray data
por: Hasegawa, Yoshikazu, et al.
Publicado: (2006) -
Gene selection and classification of microarray data using random forest
por: Díaz-Uriarte, Ramón, et al.
Publicado: (2006) -
Gene selection for classification of microarray data based on the Bayes error
por: Zhang, Ji-Gang, et al.
Publicado: (2007)