Cargando…
On the Choice and Number of Microarrays for Transcriptional Regulatory Network Inference
BACKGROUND: Transcriptional regulatory network inference (TRNI) from large compendia of DNA microarrays has become a fundamental approach for discovering transcription factor (TF)-gene interactions at the genome-wide level. In correlation-based TRNI, network edges can in principle be evaluated using...
Autores principales: | Cosgrove, Elissa J, Gardner, Timothy S, Kolaczyk, Eric D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949888/ https://www.ncbi.nlm.nih.gov/pubmed/20825684 http://dx.doi.org/10.1186/1471-2105-11-454 |
Ejemplares similares
-
Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks
por: Li, Yong, et al.
Publicado: (2010) -
Cross-Platform Microarray Data Normalisation for Regulatory Network Inference
por: Sîrbu, Alina, et al.
Publicado: (2010) -
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks
por: Sîrbu, Alina, et al.
Publicado: (2015) -
ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks
por: Chávez Montes, Ricardo A, et al.
Publicado: (2014) -
Inferring gene regulatory networks from asynchronous microarray data with AIRnet
por: Oviatt, David, et al.
Publicado: (2010)