Cargando…
Asymmetric microarray data produces gene lists highly predictive of research literature on multiple cancer types
BACKGROUND: Much of the public access cancer microarray data is asymmetric, belonging to datasets containing no samples from normal tissue. Asymmetric data cannot be used in standard meta-analysis approaches (such as the inverse variance method) to obtain large sample sizes for statistical power enr...
Autores principales: | Dawany, Noor B, Tozeren, Aydin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949900/ https://www.ncbi.nlm.nih.gov/pubmed/20875095 http://dx.doi.org/10.1186/1471-2105-11-483 |
Ejemplares similares
-
Automated detection of regions of interest for tissue microarray experiments: an image texture analysis
por: Karaçali, Bilge, et al.
Publicado: (2007) -
A statistical network pre-processing method to improve relevance and significance of gene lists in microarray gene expression studies
por: Agapito, Giuseppe, et al.
Publicado: (2022) -
Preprocessing differential methylation hybridization microarray data
por: Sun, Shuying, et al.
Publicado: (2011) -
Multiple-platform data integration method with application to combined analysis of microarray and proteomic data
por: Wu, Shicheng, et al.
Publicado: (2012) -
Empirical Bayes models for multiple probe type microarrays at the probe level
por: Åstrand, Magnus, et al.
Publicado: (2008)