Cargando…
Membrane deformation and separation
Biological membranes are highly dynamic (e.g., during cell division, organelle biosynthesis, vesicular transport, and neurotransmitter release). They can be shaped into protein-coated transport vesicles or tubules and undergo regulated fusion. The life of transport vesicles depends on highly specifi...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Faculty of 1000 Ltd
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2950036/ https://www.ncbi.nlm.nih.gov/pubmed/20948799 http://dx.doi.org/10.3410/B2-35 |
Sumario: | Biological membranes are highly dynamic (e.g., during cell division, organelle biosynthesis, vesicular transport, and neurotransmitter release). They can be shaped into protein-coated transport vesicles or tubules and undergo regulated fusion. The life of transport vesicles depends on highly specific and tightly regulated protein machineries, which not only shape the donor membrane into nascent budding structures but also help to overcome the energy barrier to break the bilayers apart in order to pinch off nascent vesicles. Ultimately, vesicular membranes have to fuse with a target lipid bilayer, a process that again requires remodeling. Here, we highlight recent insights into mechanisms that lead to membrane deformation in the process of vesicular budding. |
---|