Cargando…

Predictive inference on cytoplasmic and mitochondrial thioredoxin peroxidases in the highly radioresistant Lepidopteran insect Spodoptera frugiperda

Lepidopteran insects show remarkable resistance to radiation and chemical stress than insects of other orders. Despite this, the antioxidant machinery of insects of this order is poorly understood. Recently we demonstrated the significance of cytoplasmic NOS and a stronger mitochondrial antioxidant...

Descripción completa

Detalles Bibliográficos
Autores principales: Hambarde, Shashank, Yennamalli, Ragothaman M, Subbarao, Naidu, Chandna, Sudhir
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951639/
https://www.ncbi.nlm.nih.gov/pubmed/20975889
Descripción
Sumario:Lepidopteran insects show remarkable resistance to radiation and chemical stress than insects of other orders. Despite this, the antioxidant machinery of insects of this order is poorly understood. Recently we demonstrated the significance of cytoplasmic NOS and a stronger mitochondrial antioxidant enzyme system in the stress-resistance of Lepidopteran insects. In the present study, we hypothesize two thioredoxin peroxidase orthologues (Sf-TPx1 and Sf-TPx2) in Lepidopteran insect Spodoptera frugiperda and demonstrate their structural/functional features important for cellular antioxidant activity and stress resistance. Results show a higher mitochondrial localization score (WoLFPSORT) of Sf-TPx2 (mitochondria-18.0, cytoplasm-7.0, nucleus-4.0) than its Drosophila orthologue Jafrac2 (secretory-30.0; mitochondria/nucleus/cytoplasm-no signal), which is important for antioxidant activity, and a higher cytoplasmic localization score of Sf-TPx1 (mitochondria-no signal; cytoplasm-22.0; nucleus-3.5) than the Drosophila Jafrac1 (mitochondria-17; nucleus- 11; cytoplasm-no signal). Structural modeling data show certain motifs present in Jafrac1 and Jafrac2 that affect active site conformation and separate cysteine residues at distances not suitable for disulphide bridge formation (5.21Å; 5.73Å). These motifs are absent in Sf-TPx1 and Sf-TPx2, yielding shorter distance (2.01Å; 2.05Å) between the cysteine residues suitable for disulphide bridge formation. Taken together, the disulphide bridge as well as mitochondrial and cytoplasmic localization are crucial for peroxidatic activity of TPx's. Therefore,we hypothesize that the Spodoptera TPx's offer potentially stronger anti-oxidant activity than that of Drosophila orthologues, and may contribute in the high radioresistance of Lepidopteran insects.