Cargando…
Comparison of Computational Models for Assessing Conservation of Gene Expression across Species
Assessing conservation/divergence of gene expression across species is important for the understanding of gene regulation evolution. Although advances in microarray technology have provided massive high-dimensional gene expression data, the analysis of such data is still challenging. To date, assess...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951896/ https://www.ncbi.nlm.nih.gov/pubmed/20949029 http://dx.doi.org/10.1371/journal.pone.0013239 |
Sumario: | Assessing conservation/divergence of gene expression across species is important for the understanding of gene regulation evolution. Although advances in microarray technology have provided massive high-dimensional gene expression data, the analysis of such data is still challenging. To date, assessing cross-species conservation of gene expression using microarray data has been mainly based on comparison of expression patterns across corresponding tissues, or comparison of co-expression of a gene with a reference set of genes. Because direct and reliable high-throughput experimental data on conservation of gene expression are often unavailable, the assessment of these two computational models is very challenging and has not been reported yet. In this study, we compared one corresponding tissue based method and three co-expression based methods for assessing conservation of gene expression, in terms of their pair-wise agreements, using a frequently used human-mouse tissue expression dataset. We find that 1) the co-expression based methods are only moderately correlated with the corresponding tissue based methods, 2) the reliability of co-expression based methods is affected by the size of the reference ortholog set, and 3) the corresponding tissue based methods may lose some information for assessing conservation of gene expression. We suggest that the use of either of these two computational models to study the evolution of a gene's expression may be subject to great uncertainty, and the investigation of changes in both gene expression patterns over corresponding tissues and co-expression of the gene with other genes is necessary. |
---|