Cargando…

Rational Design of a Plasmid Origin That Replicates Efficiently in Both Gram-Positive and Gram-Negative Bacteria

BACKGROUND: Most plasmids replicate only within a particular genus or family. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an engineered high copy number expression vector, pBAV1K-T5, that produces varying quantities of active reporter proteins in Escherichia coli, Acinetobacter baylyi ADP1, Agr...

Descripción completa

Detalles Bibliográficos
Autores principales: Bryksin, Anton V., Matsumura, Ichiro
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951906/
https://www.ncbi.nlm.nih.gov/pubmed/20949038
http://dx.doi.org/10.1371/journal.pone.0013244
Descripción
Sumario:BACKGROUND: Most plasmids replicate only within a particular genus or family. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an engineered high copy number expression vector, pBAV1K-T5, that produces varying quantities of active reporter proteins in Escherichia coli, Acinetobacter baylyi ADP1, Agrobacterium tumefaciens, (all Gram-negative), Streptococcus pneumoniae, Leifsonia shinshuensis, Peanibacillus sp. S18-36 and Bacillus subtilis (Gram-positive). CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the efficiency of pBAV1K-T5 replication in different bacterial species, thereby facilitating the study of proteins that don't fold well in E. coli and pathogens not amenable to existing genetic tools.