Cargando…

Growth dynamics and the proximate biochemical composition and fatty acid profile of the heterotrophically grown diatom Cyclotella cryptica

To investigate the nutritional value of the diatom Cyclotella cryptica as an alternative feed for aquaculture, its heterotrophic growth characteristics were studied. First, the proximate biochemical composition and fatty acid profiles were studied under a controlled heterotrophic growth condition. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Pahl, Stephen L., Lewis, David M., Chen, Feng, King, Keith D.
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953630/
https://www.ncbi.nlm.nih.gov/pubmed/21037795
http://dx.doi.org/10.1007/s10811-009-9436-7
Descripción
Sumario:To investigate the nutritional value of the diatom Cyclotella cryptica as an alternative feed for aquaculture, its heterotrophic growth characteristics were studied. First, the proximate biochemical composition and fatty acid profiles were studied under a controlled heterotrophic growth condition. The approximate total ash, carbohydrate, lipid, and protein content were 245 mg g(−1) (dry weight), 360 mg g(−1), 165 mg g(−1) and 260 mg g(−1), respectively. Polyunsaturated fatty acids accounted for 24.5, 31.3, 45.1 and 17.3% of the total lipids in the phospholipid, sterol, free fatty acid and triglyceride classes. Secondly, the effect of aeration and agitation rates on the specific growth rate of C. cryptica under heterotrophic conditions was studied. The maximum specific growth rate was not significantly affected (P > 0.05) by the rate of agitation within the range of 100 to 160 rpm, but it was significantly affected (P > 0.05) by the rate of aeration. Optimal growth occurred when the aeration rate was within the range of 0.44 to 1.07 v/v/min. Viability measurements throughout the growth period showed that the C. cryptica cells remained viable in spite of the varied cultivation conditions. Hydrodynamic forces are an important parameter within biological systems, and optimisation is crucial for the successful scale-up of microalgal cultivation systems. Whilst the investigation was preliminary in nature, the information gained in this study will be useful for the continual development of an alternative and cost-effective feed for bivalve spat rations.