Cargando…

Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ fact...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrano, Pedro, Pedrini, Bill, Geralt, Michael, Jaudzems, Kristaps, Mohanty, Biswaranjan, Horst, Reto, Herrmann, Torsten, Elsliger, Marc-André, Wilson, Ian A., Wüthrich, Kurt
Formato: Texto
Lenguaje:English
Publicado: International Union of Crystallography 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954230/
https://www.ncbi.nlm.nih.gov/pubmed/20944236
http://dx.doi.org/10.1107/S1744309110033658
_version_ 1782187909943656448
author Serrano, Pedro
Pedrini, Bill
Geralt, Michael
Jaudzems, Kristaps
Mohanty, Biswaranjan
Horst, Reto
Herrmann, Torsten
Elsliger, Marc-André
Wilson, Ian A.
Wüthrich, Kurt
author_facet Serrano, Pedro
Pedrini, Bill
Geralt, Michael
Jaudzems, Kristaps
Mohanty, Biswaranjan
Horst, Reto
Herrmann, Torsten
Elsliger, Marc-André
Wilson, Ian A.
Wüthrich, Kurt
author_sort Serrano, Pedro
collection PubMed
description The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the millisecond time scale that appears to be frozen in the crystals. These observations suggest that a search for molecular regions showing increased structural disorder and slow dynamic processes in solution while being well ordered in the corresponding crystal structure might be a valid initial step in the challenge of identifying putative active sites in functionally unannotated proteins with known three-dimensional structure.
format Text
id pubmed-2954230
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher International Union of Crystallography
record_format MEDLINE/PubMed
spelling pubmed-29542302010-10-27 Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites Serrano, Pedro Pedrini, Bill Geralt, Michael Jaudzems, Kristaps Mohanty, Biswaranjan Horst, Reto Herrmann, Torsten Elsliger, Marc-André Wilson, Ian A. Wüthrich, Kurt Acta Crystallogr Sect F Struct Biol Cryst Commun NMR in a high-throughput environment The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the millisecond time scale that appears to be frozen in the crystals. These observations suggest that a search for molecular regions showing increased structural disorder and slow dynamic processes in solution while being well ordered in the corresponding crystal structure might be a valid initial step in the challenge of identifying putative active sites in functionally unannotated proteins with known three-dimensional structure. International Union of Crystallography 2010-09-30 /pmc/articles/PMC2954230/ /pubmed/20944236 http://dx.doi.org/10.1107/S1744309110033658 Text en © Serrano et al. 2010 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
spellingShingle NMR in a high-throughput environment
Serrano, Pedro
Pedrini, Bill
Geralt, Michael
Jaudzems, Kristaps
Mohanty, Biswaranjan
Horst, Reto
Herrmann, Torsten
Elsliger, Marc-André
Wilson, Ian A.
Wüthrich, Kurt
Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title_full Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title_fullStr Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title_full_unstemmed Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title_short Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites
title_sort comparison of nmr and crystal structures highlights conformational isomerism in protein active sites
topic NMR in a high-throughput environment
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954230/
https://www.ncbi.nlm.nih.gov/pubmed/20944236
http://dx.doi.org/10.1107/S1744309110033658
work_keys_str_mv AT serranopedro comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT pedrinibill comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT geraltmichael comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT jaudzemskristaps comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT mohantybiswaranjan comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT horstreto comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT herrmanntorsten comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT elsligermarcandre comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT wilsoniana comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites
AT wuthrichkurt comparisonofnmrandcrystalstructureshighlightsconformationalisomerisminproteinactivesites