Cargando…
Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input laye...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954316/ https://www.ncbi.nlm.nih.gov/pubmed/20696381 http://dx.doi.org/10.1016/j.neuron.2010.06.028 |
_version_ | 1782187916529762304 |
---|---|
author | Vervaeke, Koen Lőrincz, Andrea Gleeson, Padraig Farinella, Matteo Nusser, Zoltan Silver, R. Angus |
author_facet | Vervaeke, Koen Lőrincz, Andrea Gleeson, Padraig Farinella, Matteo Nusser, Zoltan Silver, R. Angus |
author_sort | Vervaeke, Koen |
collection | PubMed |
description | Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. |
format | Text |
id | pubmed-2954316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-29543162010-11-02 Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input Vervaeke, Koen Lőrincz, Andrea Gleeson, Padraig Farinella, Matteo Nusser, Zoltan Silver, R. Angus Neuron Article Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. Cell Press 2010-08-12 /pmc/articles/PMC2954316/ /pubmed/20696381 http://dx.doi.org/10.1016/j.neuron.2010.06.028 Text en © 2010 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Vervaeke, Koen Lőrincz, Andrea Gleeson, Padraig Farinella, Matteo Nusser, Zoltan Silver, R. Angus Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title | Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title_full | Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title_fullStr | Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title_full_unstemmed | Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title_short | Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input |
title_sort | rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954316/ https://www.ncbi.nlm.nih.gov/pubmed/20696381 http://dx.doi.org/10.1016/j.neuron.2010.06.028 |
work_keys_str_mv | AT vervaekekoen rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput AT lorinczandrea rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput AT gleesonpadraig rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput AT farinellamatteo rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput AT nusserzoltan rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput AT silverrangus rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput |