Cargando…

Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input

Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input laye...

Descripción completa

Detalles Bibliográficos
Autores principales: Vervaeke, Koen, Lőrincz, Andrea, Gleeson, Padraig, Farinella, Matteo, Nusser, Zoltan, Silver, R. Angus
Formato: Texto
Lenguaje:English
Publicado: Cell Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954316/
https://www.ncbi.nlm.nih.gov/pubmed/20696381
http://dx.doi.org/10.1016/j.neuron.2010.06.028
_version_ 1782187916529762304
author Vervaeke, Koen
Lőrincz, Andrea
Gleeson, Padraig
Farinella, Matteo
Nusser, Zoltan
Silver, R. Angus
author_facet Vervaeke, Koen
Lőrincz, Andrea
Gleeson, Padraig
Farinella, Matteo
Nusser, Zoltan
Silver, R. Angus
author_sort Vervaeke, Koen
collection PubMed
description Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input.
format Text
id pubmed-2954316
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-29543162010-11-02 Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input Vervaeke, Koen Lőrincz, Andrea Gleeson, Padraig Farinella, Matteo Nusser, Zoltan Silver, R. Angus Neuron Article Electrical synapses between interneurons contribute to synchronized firing and network oscillations in the brain. However, little is known about how such networks respond to excitatory synaptic input. To investigate this, we studied electrically coupled Golgi cells (GoC) in the cerebellar input layer. We show with immunohistochemistry, electron microscopy, and electrophysiology that Connexin-36 is necessary for functional gap junctions (GJs) between GoC dendrites. In the absence of coincident synaptic input, GoCs synchronize their firing. In contrast, sparse, coincident mossy fiber input triggered a mixture of excitation and inhibition of GoC firing and spike desynchronization. Inhibition is caused by propagation of the spike afterhyperpolarization through GJs. This triggers network desynchronization because heterogeneous coupling to surrounding cells causes spike-phase dispersion. Detailed network models predict that desynchronization is robust, local, and dependent on synaptic input properties. Our results show that GJ coupling can be inhibitory and either promote network synchronization or trigger rapid network desynchronization depending on the synaptic input. Cell Press 2010-08-12 /pmc/articles/PMC2954316/ /pubmed/20696381 http://dx.doi.org/10.1016/j.neuron.2010.06.028 Text en © 2010 ELL & Excerpta Medica. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license
spellingShingle Article
Vervaeke, Koen
Lőrincz, Andrea
Gleeson, Padraig
Farinella, Matteo
Nusser, Zoltan
Silver, R. Angus
Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title_full Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title_fullStr Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title_full_unstemmed Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title_short Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input
title_sort rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954316/
https://www.ncbi.nlm.nih.gov/pubmed/20696381
http://dx.doi.org/10.1016/j.neuron.2010.06.028
work_keys_str_mv AT vervaekekoen rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput
AT lorinczandrea rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput
AT gleesonpadraig rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput
AT farinellamatteo rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput
AT nusserzoltan rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput
AT silverrangus rapiddesynchronizationofanelectricallycoupledinterneuronnetworkwithsparseexcitatorysynapticinput