Cargando…
Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents
Smallpox is an acute disease caused by infection with variola virus that has had historic effects on the human population due to its virulence and infectivity. Because variola remains a threat to humans, the discovery and development of novel pox therapeutics and vaccines has been an area of intense...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954426/ https://www.ncbi.nlm.nih.gov/pubmed/20953322 http://dx.doi.org/10.3390/v2092096 |
_version_ | 1782187935016157184 |
---|---|
author | Roy, Chad J. Voss, Thomas G. |
author_facet | Roy, Chad J. Voss, Thomas G. |
author_sort | Roy, Chad J. |
collection | PubMed |
description | Smallpox is an acute disease caused by infection with variola virus that has had historic effects on the human population due to its virulence and infectivity. Because variola remains a threat to humans, the discovery and development of novel pox therapeutics and vaccines has been an area of intense focus. As variola is a uniquely human virus lacking a robust animal model, the development of rational therapeutic or vaccine approaches for variola requires the use of model systems that reflect the clinical aspects of human infection. Many laboratory animal models of poxviral disease have been developed over the years to study host response and to evaluate new therapeutics and vaccines for the treatment or prevention of human smallpox. Rabbitpox (rabbitpox virus infection in rabbits) is a severe and often lethal infection that has been identified as an ideal disease model for the study of poxviruses in a non-rodent species. The aerosol infection model (aerosolized rabbitpox infection) embodies many of the desired aspects of the disease syndrome that involves the respiratory system and thus may serve as an appropriate model for evaluation of antivirals under development for the therapeutic treatment of human smallpox. In this review we summarize the aerosol model of rabbitpox, discuss the development efforts that have thus far used this model for antiviral testing, and comment on the prospects for its use in future evaluations requiring a poxviral model with a focus on respiratory infection. |
format | Text |
id | pubmed-2954426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-29544262010-10-14 Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents Roy, Chad J. Voss, Thomas G. Viruses Review Smallpox is an acute disease caused by infection with variola virus that has had historic effects on the human population due to its virulence and infectivity. Because variola remains a threat to humans, the discovery and development of novel pox therapeutics and vaccines has been an area of intense focus. As variola is a uniquely human virus lacking a robust animal model, the development of rational therapeutic or vaccine approaches for variola requires the use of model systems that reflect the clinical aspects of human infection. Many laboratory animal models of poxviral disease have been developed over the years to study host response and to evaluate new therapeutics and vaccines for the treatment or prevention of human smallpox. Rabbitpox (rabbitpox virus infection in rabbits) is a severe and often lethal infection that has been identified as an ideal disease model for the study of poxviruses in a non-rodent species. The aerosol infection model (aerosolized rabbitpox infection) embodies many of the desired aspects of the disease syndrome that involves the respiratory system and thus may serve as an appropriate model for evaluation of antivirals under development for the therapeutic treatment of human smallpox. In this review we summarize the aerosol model of rabbitpox, discuss the development efforts that have thus far used this model for antiviral testing, and comment on the prospects for its use in future evaluations requiring a poxviral model with a focus on respiratory infection. Molecular Diversity Preservation International (MDPI) 2010-09-27 /pmc/articles/PMC2954426/ /pubmed/20953322 http://dx.doi.org/10.3390/v2092096 Text en © 2010 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Roy, Chad J. Voss, Thomas G. Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title | Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title_full | Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title_fullStr | Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title_full_unstemmed | Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title_short | Use of the Aerosol Rabbitpox Virus Model for Evaluation of Anti-Poxvirus Agents |
title_sort | use of the aerosol rabbitpox virus model for evaluation of anti-poxvirus agents |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954426/ https://www.ncbi.nlm.nih.gov/pubmed/20953322 http://dx.doi.org/10.3390/v2092096 |
work_keys_str_mv | AT roychadj useoftheaerosolrabbitpoxvirusmodelforevaluationofantipoxvirusagents AT vossthomasg useoftheaerosolrabbitpoxvirusmodelforevaluationofantipoxvirusagents |