Cargando…

An Examination of the Association of Selected Toxic Metals with Total and Central Obesity Indices: NHANES 99-02

It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, wher...

Descripción completa

Detalles Bibliográficos
Autores principales: Padilla, Miguel A., Elobeid, Mai, Ruden, Douglas M., Allison, David B.
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954548/
https://www.ncbi.nlm.nih.gov/pubmed/20948927
http://dx.doi.org/10.3390/ijerph7093332
Descripción
Sumario:It is conceivable that toxic metals contribute to obesity by influencing various aspects of metabolism, such as by substituting for essential micronutrients and vital metals, or by inducing oxidative stress. Deficiency of the essential metal zinc decreases adiposity in humans and rodent models, whereas deficiencies of chromium, copper, iron, and magnesium increases adiposity. This study utilized the NHANES 99-02 data to explore the association between waist circumference and body mass index with the body burdens of selected toxic metals (barium, cadmium, cobalt, cesium, molybdenum, lead, antimony, thallium, and tungsten). Some of the associations were significant direct relationships (barium and thallium), and some of the associations were significant inverse relationships (cadmium, cobalt, cesium, and lead). Molybdenum, antimony, and tungsten had mostly insignificant associations with waist circumference and body mass index. This is novel result for most of the toxic metals studied, and a surprising result for lead because high stored lead levels have been shown to correlate with higher rates of diabetes, and obesity may be a key risk factor for developing diabetes. These associations suggest the possibility that environmental exposure to metals may contribute to variations in human weight gain/loss. Future research, such as prospective studies rather than the cross-sectional studies presented here, is warranted to confirm these findings.