Cargando…

SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus

The severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes eight accessory proteins. Accessory protein 6 is a 63-residue amphipathic peptide that accelerates coronavirus infection kinetics in cell culture and in mice. Protein 6 is minimally bifunctional, with an N-terminal lipophili...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussain, Snawar, Gallagher, Tom
Formato: Texto
Lenguaje:English
Publicado: Elsevier B.V. 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954772/
https://www.ncbi.nlm.nih.gov/pubmed/20800627
http://dx.doi.org/10.1016/j.virusres.2010.08.017
Descripción
Sumario:The severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes eight accessory proteins. Accessory protein 6 is a 63-residue amphipathic peptide that accelerates coronavirus infection kinetics in cell culture and in mice. Protein 6 is minimally bifunctional, with an N-terminal lipophilic part implicated in accelerating viral growth and a C-terminal hydrophilic part interfering with general protein import into the nucleus. This interference with nuclear import requires interaction between protein 6 and cellular karyopherins, a process that typically involves nuclear localization signal (NLS) motifs. Here we dissected protein 6 using site-directed mutagenesis and found no evidence for a classical NLS. Furthermore, we found that the C-terminal tail of protein 6 impeded nuclear import only in the context of a lipophilic N-terminus, which could be derived from membrane proteins unrelated to protein 6. These findings are discussed in the context of the proposed protein 6 structure.