Cargando…

Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn's disease

BACKGROUND: Certain urinary metabolites are the product of gut microbial or mammalian metabolism; others, such as hippurate, are mammalian-microbial 'co-metabolites'. It has previously been observed that Crohn's disease (CD) patients excrete significantly less hippurate than controls....

Descripción completa

Detalles Bibliográficos
Autores principales: Williams, Horace RT, Cox, I Jane, Walker, David G, Cobbold, Jeremy FL, Taylor-Robinson, Simon D, Marshall, Sara E, Orchard, Timothy R
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2954941/
https://www.ncbi.nlm.nih.gov/pubmed/20849615
http://dx.doi.org/10.1186/1471-230X-10-108
Descripción
Sumario:BACKGROUND: Certain urinary metabolites are the product of gut microbial or mammalian metabolism; others, such as hippurate, are mammalian-microbial 'co-metabolites'. It has previously been observed that Crohn's disease (CD) patients excrete significantly less hippurate than controls. There are two stages in the biosynthesis of this metabolite: 1) gut microbial metabolism of dietary aromatic compounds to benzoate, and 2) subsequent hepatorenal conjugation of benzoate with glycine, forming hippurate. Differences in such urinary co-metabolites may therefore reflect systemic consequences of altered gut microbial metabolism, though altered host metabolic pathways may also be involved. METHODS: It was hypothesised that reduced hippurate excretion in CD patients was due to alterations in the gut microbiota, and not differences in dietary benzoate, nor defective host enzymatic conjugation of benzoate. 5 mg/kg sodium benzoate were administered orally to 16 CD patients and 16 healthy controls on a low-benzoate diet. Baseline and peak urinary hippurate excretion were measured. RESULTS: Baseline hippurate levels were significantly lower in the CD patients (p = 0.0009). After benzoate ingestion, peak urinary levels of hippurate did not differ significantly between the cohorts. Consequently the relative increase in excretion was significantly greater in CD (p = 0.0007). CONCLUSIONS: Lower urinary hippurate levels in CD are not due to differences in dietary benzoate. A defect in the enzymatic conjugation of benzoate in CD has been excluded, strongly implicating altered gut microbial metabolism as the cause of decreased hippurate levels in CD.