Cargando…
Statistical inference of the time-varying structure of gene-regulation networks
BACKGROUND: Biological networks are highly dynamic in response to environmental and physiological cues. This variability is in contrast to conventional analyses of biological networks, which have overwhelmingly employed static graph models which stay constant over time to describe biological systems...
Autores principales: | Lèbre, Sophie, Becq, Jennifer, Devaux, Frédéric, Stumpf, Michael PH, Lelandais, Gaëlle |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955603/ https://www.ncbi.nlm.nih.gov/pubmed/20860793 http://dx.doi.org/10.1186/1752-0509-4-130 |
Ejemplares similares
-
Inference of temporally varying Bayesian Networks
por: Thorne, Thomas, et al.
Publicado: (2012) -
Structure and properties of transcriptional networks driving selenite stress response in yeasts
por: Salin, Hélène, et al.
Publicado: (2008) -
Data-driven inference for the spatial scan statistic
por: Almeida, Alexandre CL, et al.
Publicado: (2011) -
Statistical Inference Methods for Sparse Biological Time Series Data
por: Ndukum, Juliet, et al.
Publicado: (2011) -
Generating confidence intervals on biological networks
por: Thorne, Thomas, et al.
Publicado: (2007)