Cargando…

Calibrative approaches to protein solubility modeling of a mutant series using physicochemical descriptors

A set of physicochemical properties describing a protein of known structure is employed for a calibrative approach to protein solubility. Common hydrodynamic and electrophoretic properties routinely measured in the bio-analytical laboratory such as zeta potential, dipole moment, the second osmotic v...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, William F., Labute, P.
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956060/
https://www.ncbi.nlm.nih.gov/pubmed/20842408
http://dx.doi.org/10.1007/s10822-010-9383-z
Descripción
Sumario:A set of physicochemical properties describing a protein of known structure is employed for a calibrative approach to protein solubility. Common hydrodynamic and electrophoretic properties routinely measured in the bio-analytical laboratory such as zeta potential, dipole moment, the second osmotic virial coefficient are first estimated in silico as a function a pH and solution ionic strength starting with the protein crystal structure. The utility of these descriptors in understanding the solubility of a series of ribonuclease Sa mutants is investigated. A simple two parameter model was trained using solubility data of the wild type protein measured at a restricted number of solution pHs. Solubility estimates of the mutants demonstrate that zeta potential and dipole moment may be used to rationalize solubility trends over a wide pH range. Additionally a calibrative model based on the protein’s second osmotic virial coefficient, B (22) was developed. A modified DVLO type potential along with a simplified representation of the protein allowed for efficient computation of the second viral coefficient. The standard error of prediction for both models was on the order of 0.3 log S units. These results are very encouraging and demonstrate that these models may be trained with a small number of samples and employed extrapolatively for estimating mutant solubilities.