Cargando…
2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine
In the present work, support vector machines (SVMs) and multiple linear regression (MLR) techniques were used for quantitative structure–property relationship (QSPR) studies of retention time (t(R)) in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecen...
Autores principales: | Khosrokhavar, Roya, Ghasemi, Jahan Bakhsh, Shiri, Fereshteh |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956080/ https://www.ncbi.nlm.nih.gov/pubmed/20957079 http://dx.doi.org/10.3390/ijms11093052 |
Ejemplares similares
-
Computational Study of Estrogen Receptor-Alpha Antagonist with Three-Dimensional Quantitative Structure-Activity Relationship, Support Vector Regression, and Linear Regression Methods
por: Chang, Ying-Hsin, et al.
Publicado: (2013) -
Seeking gene relationships in gene expression data using support vector machine regression
por: Yu, Robert, et al.
Publicado: (2007) -
DOA Finding with Support Vector Regression Based Forward–Backward Linear Prediction
por: Pan, Jingjing, et al.
Publicado: (2017) -
Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs
por: Shiri, Fereshteh, et al.
Publicado: (2016) -
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2022)