Cargando…
Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm
This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF) based on the Mold(2) molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC(50) values, producing good external R(2)(p...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956104/ https://www.ncbi.nlm.nih.gov/pubmed/20957104 http://dx.doi.org/10.3390/ijms11093413 |
Sumario: | This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF) based on the Mold(2) molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC(50) values, producing good external R(2)(pred) of 0.72, a standard error of prediction (SEP) of 0.45, for an external prediction set of 51 inhibitors which were not used in the development of QSAR models. By using the RF built-in measure of the relative importance of the descriptors, an important predictor—the number of group donor atoms for H-bonds (with N and O)—has been identified to play a crucial role in PKCθ inhibitory activity. We hope that the developed RF model will be helpful in the screening and prediction of novel unknown PKCθ inhibitory activity. |
---|