Cargando…

Prediction of PKCθ Inhibitory Activity Using the Random Forest Algorithm

This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF) based on the Mold(2) molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC(50) values, producing good external R(2)(p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hao, Ming, Li, Yan, Wang, Yonghua, Zhang, Shuwei
Formato: Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956104/
https://www.ncbi.nlm.nih.gov/pubmed/20957104
http://dx.doi.org/10.3390/ijms11093413
Descripción
Sumario:This work is devoted to the prediction of a series of 208 structurally diverse PKCθ inhibitors using the Random Forest (RF) based on the Mold(2) molecular descriptors. The RF model was established and identified as a robust predictor of the experimental pIC(50) values, producing good external R(2)(pred) of 0.72, a standard error of prediction (SEP) of 0.45, for an external prediction set of 51 inhibitors which were not used in the development of QSAR models. By using the RF built-in measure of the relative importance of the descriptors, an important predictor—the number of group donor atoms for H-bonds (with N and O)—has been identified to play a crucial role in PKCθ inhibitory activity. We hope that the developed RF model will be helpful in the screening and prediction of novel unknown PKCθ inhibitory activity.