Cargando…
Model Free Approach for Non-Isothermal Decomposition of Un-Irradiated and γ-Irradiated Silver Acetate: New Route for Synthesis of Ag(2)O Nanoparticles
Kinetic studies for the non-isothermal decomposition of unirradiated and γ-irradiated silver acetate with 10(3) kGy total γ-ray doses were carried out in air. The results showed that the decomposition proceeds in one major step in the temperature range of (180–270 °C) with the formation of Ag(2)O as...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956112/ https://www.ncbi.nlm.nih.gov/pubmed/20957112 http://dx.doi.org/10.3390/ijms11093600 |
Sumario: | Kinetic studies for the non-isothermal decomposition of unirradiated and γ-irradiated silver acetate with 10(3) kGy total γ-ray doses were carried out in air. The results showed that the decomposition proceeds in one major step in the temperature range of (180–270 °C) with the formation of Ag(2)O as solid residue. The non-isothermal data for un-irradiated and γ-irradiated silver acetate were analyzed using Flynn-Wall-Ozawa (FWO) and nonlinear Vyazovkin (VYZ) iso-conversional methods. These free models on the investigated data showed a systematic dependence of Ea on α indicating a simple decomposition process. No significant changes in the thermal decomposition behavior of silver acetate were recorded as a result of γ-irradiation. Calcinations of γ-irradiated silver acetate (CH(3)COOAg) at 200 °C for 2 hours only led to the formation of pure Ag(2)O mono-dispersed nanoparticles. X-ray diffraction, FTIR and SEM techniques were employed for characterization of the synthesized nanoparticles. |
---|