Cargando…
An efficient and versatile synthesis of GlcNAcstatins—potent and selective O-GlcNAcase inhibitors built on the tetrahydroimidazo[1,2-a]pyridine scaffold
We report a novel approach to the synthesis of GlcNAcstatins—members of an emerging family of potent and selective inhibitors of peptidyl O-GlcNAc hydrolase build upon tetrahydroimidazo[1,2-a]pyridine scaffold. Making use of a streamlined synthetic sequence featuring de novo synthesis of imidazoles...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956484/ https://www.ncbi.nlm.nih.gov/pubmed/20976183 http://dx.doi.org/10.1016/j.tet.2010.07.037 |
Sumario: | We report a novel approach to the synthesis of GlcNAcstatins—members of an emerging family of potent and selective inhibitors of peptidyl O-GlcNAc hydrolase build upon tetrahydroimidazo[1,2-a]pyridine scaffold. Making use of a streamlined synthetic sequence featuring de novo synthesis of imidazoles from glyoxal, ammonia and aldehydes, a properly functionalised linear GlcNAcstatin precursor has been efficiently prepared starting from methyl 3,4-O-(2′,3′-dimethoxybutane-2′,3′-diyl)-α-d-mannopyranoside. Subsequent ring closure of the linear precursor in an intramolecular S(N)2 process furnished the key fused d-mannose-imidazole GlcNAcstatin precursor in excellent yield. Finally, a sequence of transformations of this key intermediate granted expeditious access to a variety of the target compounds bearing a C(2)-phenethyl group and a range of N(8) acyl substituents. The versatility of the new approach stems from an appropriate choice of a set of acid labile permanent protecting groups on the monosaccharide starting material. Application was demonstrated by the synthesis of GlcNAcstatins containing polyunsaturated and thiol-containing amido substituents. |
---|