Cargando…

Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis

BACKGROUND: The plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development. In seeds, ABA induces embryogenesis and seed maturation as well as seed dormancy and germination. In vegetative tissues, ABA is a necessary mediator in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoqin, Kuang, Tingyun, He, Yikun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956542/
https://www.ncbi.nlm.nih.gov/pubmed/20799958
http://dx.doi.org/10.1186/1471-2229-10-192
_version_ 1782188156066463744
author Wang, Xiaoqin
Kuang, Tingyun
He, Yikun
author_facet Wang, Xiaoqin
Kuang, Tingyun
He, Yikun
author_sort Wang, Xiaoqin
collection PubMed
description BACKGROUND: The plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development. In seeds, ABA induces embryogenesis and seed maturation as well as seed dormancy and germination. In vegetative tissues, ABA is a necessary mediator in the triggering of many of the physiological and molecular adaptive responses of the plant to adverse environmental conditions, such as desiccation, salt and cold. RESULTS: In this study, we investigated the influence of abscisic acid (ABA) on Physcomitrella patens at the level of the proteome using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots showed changes in response to ABA treatment. Among them, thirteen protein spots were down-regulated; fifty-two protein spots were up-regulated including four protein spots which were newly induced. These proteins were involved in various functions, including material and energy metabolism, defense, protein destination and storage, transcription, signal transduction, cell growth/division, transport, and cytoskeleton. Specifically, most of the up-regulated proteins functioned as molecular chaperones, transcriptional regulators, and defense proteins. Detailed analysis of these up-regulated proteins showed that ABA could trigger stress and defense responses and protect plants from oxidative damage. Otherwise, three protein kinases involved in signal pathways were up-regulated suggesting that P. patens is sensitive to exogenous ABA. The down-regulated of the Rubisco small subunit, photosystem II oxygen-evolving complex proteins and photosystem assembly protein ycf3 indicated that photosynthesis of P. patens was inhibited by ABA treatment. CONCLUSION: Proteome analysis techniques have been applied as a direct, effective, and reliable tool in differential protein expressions. Sixty-five protein spots showed differences in accumulation levels as a result of treatment with ABA. Detailed analysis these protein functions showed that physiological and molecular responses to the plant hormone ABA appear to be conserved among higher plant species and bryophytes.
format Text
id pubmed-2956542
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-29565422010-10-19 Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis Wang, Xiaoqin Kuang, Tingyun He, Yikun BMC Plant Biol Research Article BACKGROUND: The plant hormone abscisic acid (ABA) is ubiquitous among land plants where it plays an important role in plant growth and development. In seeds, ABA induces embryogenesis and seed maturation as well as seed dormancy and germination. In vegetative tissues, ABA is a necessary mediator in the triggering of many of the physiological and molecular adaptive responses of the plant to adverse environmental conditions, such as desiccation, salt and cold. RESULTS: In this study, we investigated the influence of abscisic acid (ABA) on Physcomitrella patens at the level of the proteome using two-dimensional gel electrophoresis (2-DE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sixty-five protein spots showed changes in response to ABA treatment. Among them, thirteen protein spots were down-regulated; fifty-two protein spots were up-regulated including four protein spots which were newly induced. These proteins were involved in various functions, including material and energy metabolism, defense, protein destination and storage, transcription, signal transduction, cell growth/division, transport, and cytoskeleton. Specifically, most of the up-regulated proteins functioned as molecular chaperones, transcriptional regulators, and defense proteins. Detailed analysis of these up-regulated proteins showed that ABA could trigger stress and defense responses and protect plants from oxidative damage. Otherwise, three protein kinases involved in signal pathways were up-regulated suggesting that P. patens is sensitive to exogenous ABA. The down-regulated of the Rubisco small subunit, photosystem II oxygen-evolving complex proteins and photosystem assembly protein ycf3 indicated that photosynthesis of P. patens was inhibited by ABA treatment. CONCLUSION: Proteome analysis techniques have been applied as a direct, effective, and reliable tool in differential protein expressions. Sixty-five protein spots showed differences in accumulation levels as a result of treatment with ABA. Detailed analysis these protein functions showed that physiological and molecular responses to the plant hormone ABA appear to be conserved among higher plant species and bryophytes. BioMed Central 2010-08-27 /pmc/articles/PMC2956542/ /pubmed/20799958 http://dx.doi.org/10.1186/1471-2229-10-192 Text en Copyright © 2010 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Xiaoqin
Kuang, Tingyun
He, Yikun
Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title_full Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title_fullStr Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title_full_unstemmed Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title_short Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
title_sort conservation between higher plants and the moss physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956542/
https://www.ncbi.nlm.nih.gov/pubmed/20799958
http://dx.doi.org/10.1186/1471-2229-10-192
work_keys_str_mv AT wangxiaoqin conservationbetweenhigherplantsandthemossphyscomitrellapatensinresponsetothephytohormoneabscisicacidaproteomicsanalysis
AT kuangtingyun conservationbetweenhigherplantsandthemossphyscomitrellapatensinresponsetothephytohormoneabscisicacidaproteomicsanalysis
AT heyikun conservationbetweenhigherplantsandthemossphyscomitrellapatensinresponsetothephytohormoneabscisicacidaproteomicsanalysis